EYFR03 User Manual v1.6.1 22 March 2021 # **Table of Contents** | Quick Start | 5 | |----------------------------------|----| | Chapter 1: Overview | 9 | | Warnings | 10 | | Cautions | 10 | | Unit Overview | 11 | | Compatible Tools | 11 | | Chapter 2: Using the unit | 12 | | Run Screen | 13 | | History | 18 | | Unit Status | 19 | | Network Status | 20 | | Tool Status | 20 | | Chapter 3: Configuring the unit | 22 | | Introduction | 23 | | Saving Configuration Changes | 23 | | Entering letters | 23 | | Main Menu | 24 | | Tools | 25 | | Parameters | 28 | | Groups | 32 | | Jobs | 35 | | Network Settings | 37 | | Controller Settings | 38 | | Channel Change | 46 | | Events | 46 | | Network Log | 47 | | Chapter 4: Serial Communications | 48 | | Introduction | 49 | | Barcode | 49 | | Serial Printer | 52 | | VIN Selections | | |--|-------------------| | Chapter 5: Discrete I/O | 56 | | Introduction | | | Discrete I/O Specifications | | | Assigning I/O Functions | | | I/O Status | | | Inputs | | | Outputs | 64 | | Chapter 6: Atlas Copco Open Protocol | | | Introduction | | | Using Groups with Atlas Copco Open Proto | ocol69 | | Configuration Options | | | Supported Commands | 72 | | Unsupported Commands | 73 | | Chapter 7: EtherNet/IP TM | | | Configuration Options | 76 | | Vendor-Specific Objects | 77 | | Assembly Object Connection Points | | | Backwards Compatibility Assembly Object | Connection Points | | Chapter 8: ToolsNet | 95 | | Introduction | 96 | | Configuration Options | 96 | | Chapter 9: PFCS Network Protocol | 98 | | Configuration Options | 99 | | Unsolicited Messages | | | Chapter 10: PROFINET | | | Configuration Options | | | Data Format | | | Chapter 11: Data Management | | | Download data to USB | | | Upload USB file to device | | | Chapter 12: Firmware Updates | | | Chapter 13: Product Specifications | | | EYFR03 User Manual 3 | of 113 v1.6. | 22 March 2021 | Controller Placement | 112 | |----------------------|-----| | Dimensions | 113 | | Radio Information | 113 | # **Quick Start** This quick start will guide you through the process of configuring the unit for first time use. Plug the provided power cable into the unit and 100-240 VAC power and turn on the power switch. The beeper will sound a series of quick beeps and the display will show the loading progress. Once loading is completed, the unit should go to the Run screen. If the unit stays on the loading screen with an error, please contact support. To use a tool with the Controller, you must first "learn" the tool to the Controller. To do so, press the button below **Menu**. Enter the password (1011 by default) using the numeric keypad and press ENT when completed. In the menu, press the right arrow to select Tools and press ENT. If the tool you are going to learn to the Controller has previously been used with another unit, make sure that unit is off before continuing. Press the button beneath **Learn** to begin the learn process. Follow the directions on screen to learn the tool. If you get a message "Cannot replace with a tool with different type", it means you are learning a 1-way tool over top of a learned 2-way tool or vice-versa. Once the tool is learned' the slot turns green to confirm successful, then it will turn blue. The unit will return to the Tools screen with the just learned tool now with a tool name of "Tool 1" instead of "No Tool". Return to the menu by pressing ESC or the button below **Exit**. Then press ENT to go to the Parameters screen. To run a tool, you must activate a parameter that uses the tool. When learned, a tool is automatically associated with the parameter of the same number. If you are following this guide with a new unit, you should have just learned Tool 1, which can be run by Parameter 1. Press the button below **Select** to select Parameter 1. You will be returned to the Run screen, now with Parameter 1 selected. You can now perform tightenings with Tool 1 that will be monitored, stored, and reported by the Controller. #### **AccuPulse** AccuPulse tools work both in one-way communication (Default) or two-way communication. You will have to use the remote control to switch the tool from one-way to two-way mode. To set the tool from default "90" (one-way) to '91" (two-way) - 1. Put the tool into program mode. - 2. Press "C" button on the remote 4 times - 3. "90" is default (one-way), Press the + up to "91" (two-way) - 4. Press the Ok button to accept the changes. AccuPulse Tools in two-way mode "91" will flash Orange on the rear LED when the parameter is selected. If the tool is in "sleep mode" (timed out from no operation and no display) the tool will not communicate or flash orange. Pulling the tool trigger will "wake" the tool and initiate communication then flash orange. Tool sleep time can be changed in the Controller settings under Controller setting then "Tool on time". Default is 90 min. Sleep time range is 20 -720 min. In the event the Controller is powered down or loses power while the tool is in sleep mode, you must power up the Controller first before waking the tool from sleep to initiate two-way communication. Otherwise you will need to pull and reinstall the battery on the tool # Chapter 1: Overview # **Warnings** Do not disassemble the unit for repair or modifications. There is a high electrical voltage inside the unit that could cause electric shock. Do not allow any type of liquid to come into contact with any part of the unit. Insert all fittings fully into their mating receptacles. Failure to do so could result in injury. Do not fold, bend, or apply excessive force to any cable or fitting. ## **Cautions** Please use caution when handling this or any other electrical appliance. - This unit accepts an AC input voltage from 100-240 VAC. Trying to operate this unit with a voltage outside that range may cause damage to the unit. - Avoid placing or storing this unit in a location where it may become wet or dust covered. - Do not place or mount this unit in an unstable area. - Dropping this unit may result in personal injury or damage to the unit. - Before performing any maintenance on the unit, make sure to turn it off and remove the power cable. - There are no user serviceable parts inside the main enclosure of the unit. #### **Unit Overview** The EYFR03 is equipped with a color LCD display, four soft keys immediately below the LCD, a numeric keypad with decimal point, navigation keys, and enter and escape buttons. The current function of the soft keys is indicated at the bottom of the LCD above the button. The left side of the EYFR03 has two RJ-45 Ethernet ports to allow it to be used in a chain network configuration. The USB-A connector is used to provide firmware updates via a standard USB drive. This can also be used with a USB barcode reader on the EYFR03 The RS232 DSUB9 connector can be used with a serial bar code reader. The beeper provides an audio indication for any combination of accepts, rejects, and batch completions. The beeper volume can be adjusted through the user interface. (See the *Controller Settings* section in the next chapter.) The power plug accepts 100-240 VAC at 50-60 Hz. The right side of the EYFR03-A has a 24-pin discrete I/O connector. This connector is not available on the EYFR03-B model. Both models have a 5-pin remote connector that connects to other devices that provide additional I/O capabilities. # **Compatible Tools** 2-way compatible models • EYFLA7AR, EYFLA8AR, EYFLA8CR, EYFLA8PR, EYFLA9CR, EYFLA9PR, EYFMA2PR, EYFNA1PRT, EYFNA1CRT, EYFNA1JRT, EYFPA1JRT 1-way compatible models • EYFLA4AR, EYFLA5AR, EYFLA5PR, EYFLA5QR, EYFLA6JR, EYFLA6PR, EYFMA1JR, EYFMA1PR, EYFNA1CR, EYFNA1JR, EYFNA1PR, EYFPA1JR, EYGA1NR, EYFGA2NR, EYGA3NR, EYFNA1PRT, EYFNA1CRT, EYFNA1JRT, EYFPA1JRT # Chapter 2: Using the unit # **Concepts** #### **Tools** The EYFR03 works with up to 16 Panasonic battery tools at a time. To use a tool with the Controller, you must first "learn" the tool to the Controller. The process to do this is described in the Quick Start. Tools are not activated directly by the unit. Instead, they are activated when a parameter that uses the tool is running. Tools are automatically used by the parameter of the same number (Parameter 1 always uses Tool 1, Parameter 2 always uses Tool 2, etc.). A tool may additionally be used by any number of Parameters 17-100 but may not be assigned to any Parameter 1-16 other than the matching parameter to which it is automatically assigned. The EYFR03 can store some information about when calibration or preventative maintenance should occur. These are set up in the Tool Configuration screen, which is described in the next chapter. For tools with the appropriate firmware and setup, the unit will use the enable/disable or antitheft feature to only allow the tool to run when a parameter that uses it is active. #### **Parameters** Parameters are the basic unit of operation for the EYFR03. A parameter contains a tool to run and some settings to use with it, such as the batch size. The EYFR03 supports 100 parameters. Each parameter must be associated with one of the tools learned to the unit before it can be run. Parameters 1-16 will always be associated with the tool of the same number, and the other parameters may be used to operate a tool with different settings. #### **Groups** Groups are multiple parameters that must all run together and can run simultaneously in any order. The EYFR03 supports 100 groups with up to 16 parameters each. A group cannot contain more than one parameter that uses a given tool, as it would not be able to determine which parameter a result should be assigned to. When defining a group, you may override the batch count for parameters in the group while the group is running. This does not change the batch size defined in the parameter. Groups may be run in free or standard (synchronized) mode. In standard mode, all parameters must complete a full batch before any
parameter can begin running a second batch. In free mode, each parameter in the group can proceed independently of the others and does not require all parameters to complete their batch before any parameters can run again. This makes free groups useful in situations where you have limited need to control tool operation but want to report rundowns from the tools. #### <u>Jobs</u> Jobs are the top level of operation in the EYFR03, made up of multiple parameters or groups that must all run together in a sequence. The EYFR03 supports 100 jobs with up to 30 steps each. Unlike groups, a job may have multiple parameters that use the same tool or even the same parameter or group multiple times. As with groups, you may override the batch count for parameter steps in the job. You cannot change the batch sizes for groups when run in a job. A free group cannot be used as a job step, since they do not ever complete. #### Run Screen The Run screen shows which parameters the unit is currently running. Depending on the number of active parameters, the Run screen will be in one of several modes. ## **Tightening Notifications** Every time a tightening is received from a running tool, the background of the area of the screen showing the current parameter and batch count for the tool will be shaded with a color indicating the status of the tightening. - Red A rejected tightening occurred. - Green An accepted tightening occurred that did not complete a batch. - Blue An accepted tightening occurred that completed a batch. If the Controller NOKs setting is set to Count, this further indicates that no rejected tightenings were counted towards this batch. - Yellow An accepted or rejected tightening occurred that completed a batch. This color will only occur when the Controller NOKs setting is set to Count and one or more rejected tightenings were counted towards the current batch. #### 1 Active Parameter - 1. Count The number of tightenings completed in the current batch - 2. Batch The number of tightenings required for the current batch - 3. Parameter Name Name of the currently running parameter - 4. Tool Name Name of the tool for the currently running parameter - 5. Tool Status Indicator Shows the status of the tool for the parameter - 6. Unit lock Indicates if the unit is locked and requires a password to access menu functions - 7. Unit Radio Status Shows the status of the unit radio - 8. Network Status Shows the status of the Ethernet and current number of connections. - 9. Soft Key 1 Function Shows the current function of soft key 1. - 10. Soft Key 2 Function Shows the current function of soft key 2. - 11. Soft Key 3 Function Shows the current function of soft key 3. - 12. Soft Key 4 Function Shows the current function of soft key 4. #### 2-9 Active Parameters - 1. Count The number of tightenings completed in the current batch of the parameter. Repeated for each active parameter. - 2. Batch The number of tightenings required for the current batch of the parameter. Repeated for each active parameter. - 3. Group Name Name of the currently running group. - 4. Tool Name Name of the tool for the parameter. Repeated for each active parameter - 5. Parameter Name Name of the parameter. Repeated for each active parameter. - 6. Tool Status Indicator Shows the status of the tool for the parameter. Repeated for each parameter - 7. Unit lock Indicates if the unit is locked and requires a password to access menu functions - 8. Unit Radio Status Shows the status of the unit radio - 9. Network Status Shows the status of the Ethernet and current number of connections. - 10. Soft Key 1 Function Shows the current function of soft key 1. - 11. Soft Key 2 Function Shows the current function of soft key 2. - 12. Soft Key 3 Function Shows the current function of soft key 3. - 13. Soft Key 4 Function Shows the current function of soft key 4. - 14. Inactive parameter When not all the parameter slots on a screen are needed (4 or 9) to show all the active parameters, the rest of the slots will be grayed out. The 5-9 active parameter screen has the same pieces as the 2-4 active parameter screen shown above, only with 9 parameter slots in a 3x3 grid instead of 4 parameter slots in a 2x2 grid. #### 10-16 Active Parameters - 1. Count The number of tightenings completed in the current batch of the parameter. Repeated for each active parameter. - 2. Batch The number of tightenings required for the current batch of the parameter. Repeated for each active parameter. - 3. Group Name Name of the currently running group. - 4. Tool Name Name of the tool for the parameter. Repeated for each active parameter - 5. Unit lock Indicates if the unit is locked and requires a password to access menu functions - 6. Unit Radio Status Shows the status of the unit radio - 7. Network Status Shows the status of the Ethernet and current number of connections. - 8. Soft Key 1 Function Shows the current function of soft key 1. - 9. Soft Key 2 Function Shows the current function of soft key 2. - 10. Soft Key 3 Function Shows the current function of soft key 3. - 11. Soft Key 4 Function Shows the current function of soft key 4. In 10-16 Active Parameter mode, the Run screen does not show parameter names or tool status indicators. #### **Tool Status Codes** The tool status indicator for each active parameter shows the status of the tool for the parameter. When the tool is ready to run, the indicator should be green with no number. If the tool is not ready to run or a warning or error condition occurs, the indicator will change to yellow for a warning or red for an error and display a code to indicate the tool condition. The possible codes are: | Code | Color | Meaning | |------|--------|---| | | Green | Tool is ready | | 1 | Red | Tool has not communicated with the unit since power-up | | 2 | Yellow | Enabling or disabling tool | | 2 | Red | Tool enable or disable failed | | 3 | Yellow | Tool is disabled | | 5 | Yellow | Radio signal strength is below recommended level for best performance | | 5 | Red | Radio signal strength is below recommended minimum level for use | | 6 | Yellow | Tool requires calibration | | 7 | Yellow | Tool requires preventative maintenance | #### Unit Radio Status Indicator The unit radio status indicator shows the status of the radio in the unit. In normal use, the indicator should be green with no number. If the radio is not working correctly, the indicator will be red with an error code. ## Network Status Indicator The network status indicator shows the status of the Ethernet ports on the unit. When the Ethernet is used, the indicator will be green and show the number of currently active network connections. If no Ethernet cable is plugged into either port, the indicator will be yellow. If the network initialization fails, the indicator will be red and show an error code. The Network Status screen shows more detailed information. # **History** Figure 7: History screen # Soft keys - 1. No function - 2. Previous Go to the previous page of more recent tightenings. When on the first page, this key will be blank. - 3. Next [ENT] Go to the next page of older tightenings. When on the last page, this key will be blank. 4. Exit [ESC] – Returns to the Run screen. The History screen shows some information about the tightenings stored in unit memory. More information about the tightenings is not shown but is available via the network protocols. This screen shows: - Time The time the tightening occurred. The date is indicated at the top of the table and each time it changes in a white row. The current time is shown at the bottom of the screen for comparison. - T# The tool number that produced the tightening - Param The number and name of the parameter that produced the tightening - Count The current batch count and batch size for the tightening - Id The tightening id number. This screen shows only the last 4 digits of the id number; additional digits may be present in the network commands. #### **Unit Status** Figure 8: Unit Status screen ## Soft keys - 1. I/O Go to the I/O Status screen (see *Chapter 5: Discrete I/O*). - 2. Network Go to the Network Status screen. - 3. Tool Go to the Tool Status screen. - 4. Exit [ESC] Returns to the Run screen. The Unit Status screen shows some basic information about the current unit configuration that may be useful for diagnostics purposes. The average signal strength is for all tools learned to the unit and should be from 0 to -70 dBm. If the signal strength is weaker, the unit may have frequent slow or failed communication. To improve the signal strength, try bringing the unit and tools closer together, changing the XBEE channel, or reducing sources of interference from the environment. Last barcode shows the command number of the last bar code scanned (see *Chapter 4:*) or an error if the last attempt bar code could not be processed. *VIN* and *ID 2-4* show what will be included with tightenings in the associated result data fields. The *Selector* field is used with the VIN Selections field described in *Chapter 4: Serial Communications*. #### **Network Status** Figure 9: Network Status screen The network status screen shows the current Ethernet status of the unit. The MAC address is assigned by the factory and cannot be changed. The IP address, subnet mask, and gateway may be edited from the Network Settings - General screen or assigned via DHCP. The Ethernet 1 and 2 lines indicate if a physical cable connection is detected on the corresponding Ethernet ports of the unit. If no connection on a port is detected, the unit will show "Not connected". If a connection is detected, the baud rate and duplex of the connection will be listed. ## **Tool Status** Figure 10: Tool Status - Good Signal Figure 11: Tool Status - Low Signal Figure 12: Tool Status - Bad Signal Figure 13: Tool Status - Last Signal Good # Soft keys - 1. Signal Show the signal strength of each tool. -
2. Address Show the address of each tool - 3. No function - 4. Exit [ESC] Returns to the Unit Status screen. The Tool Status screen shows the status of the tools learned into the unit. This screen shows the signal strength of the last packet from the tool but can also show the radio address of the tools. For signal strength, a less negative number indicates a better signal (-50 dBm is better than -60 dBM). The screen shows a color based on the quality of the signal. If the tool has not communicated with the box recently, box for the tool will have a white background with the text colored to match the color of the last signal strength received. - Green The signal from this radio is strong and will work at best performance. - Yellow The signal from the radio is weaker than recommended for best performance. The radio should work but may have slower or occasionally interrupted communication with the unit. - Red The signal from the radio is weaker than recommended for any use. The radio may successfully transmit some results but will frequently have slow or failed communication with the unit. If only one tool is red, bring it and unit closer together. If multiple tools are red, consider using a different radio channel (changed from the Controller Settings screen). # Chapter 3: Configuring the unit ## Introduction All the features of the EYFR03 can be configured directly on the unit, except the I/O and remote device configuration. The configuration, along with parameter, group, and job selection is available from the unit menu. The menu is available from the Run screen by pressing soft key 4 or ENT. The navigation keys are used primarily to move from entry to entry on a screen. The numeric keypad is used for any data entry and occasionally to assist in navigation. When describing the soft keys for a screen, [ENT] or [ESC] will be listed next to the key if the ENT or ESC buttons perform the same operation. The ESC key is generally used to cancel changes or exit a screen without performing an action. # **Saving Configuration Changes** Configuration editing screens will always have **Save** as soft key 3 and **Cancel** as soft key 4. You may also press ESC for Cancel. If you enter a screen and have not made any changes or do not want to save the changes you have made, press **Cancel**. To commit changes, press **Save**. Even if you have not made any changes, saving will update the last modified time for the item. # **Entering letters** Figure 14: Letter Entry screen The unit has a special screen that allows using the numeric keypad to enter letters for fields that allow them, such as a parameter name. To get to this screen, press [ENT] when the cursor is on a row with such a field. Lowercase letters cannot be entered from the unit but can be entered through the PC software application. The left side of this screen shows the letters associated with each number. Pressing a number repeatedly will cycle through the letters associated with the number followed by the number itself. Pressing a different number will commit the character to the new value and add the first letter associated with the new number pressed. Pressing the left arrow will remove the last entered character. Pressing the up arrow will toggle between entering letters and numbers or just numbers. Pressing the right arrow will commit the current character and move to the next position. You do not have to use the right arrow for every letter. However, there are two situations when you must use the right arrow. The first is to enter a blank space, which is accomplished by pressing the right arrow twice in a row. The second is to enter a name with two letters in a row associated with the same number. For example, to enter "Tool 1", you would need to press the following sequence of keys: | Key | New name | |-------------|----------| | 8 | T | | 6 | TM | | 6 | TN | | 6 | TO | | right arrow | T0_ | | 6 | TOM | | 6 | TON | |-------------|--------| | 6 | T00 | | 5 | TOOJ | | 5 | TOOK | | 5 | T00L | | right arrow | T00L_ | | right arrow | T00L _ | | 1 | T00L 1 | (Since neither 1 nor 0 have associated letters, pressing them will only enter the number.) Once you have entered the desired name, press **Save** or ENT. This does not permanently save the value just entered. You must also save from the screen that sent you to the letter screen. If you no longer want to change the value, press **Cancel** or ESC. At this point, the unit will return to the previous screen without changing the value. #### Main Menu Figure 15: Main Menu The EYFR03 menu provides the entry point to configure and control the unit. You must enter the box password before entering the menu from the Run screen. If you cannot remember the password, you may reset it to the factory default (1011) by entering the sequence "6853.48" on the Run screen. Use the arrow keys to navigate to the desired entry and press ENT to go to the entry's screen. To exit the menu, press ESC or navigate to **Lock & Exit** or **Exit** and press ENT. Pressing ESC or **Lock & Exit** will "lock" the menu and return to the Run screen, requiring the password to be reentered before the menu can be accessed again. Pressing **Exit** will return to the Run screen without locking the unit, allowing the menu to be reentered without entering the password. ## **Tools** Figure 16: Main menu - Tools Figure 18: Learned tool selected Figure 17: Tools Menu | Tool 1
1 | Tool 2 Tool 3 No | | No Tool | |--------------------|------------------|------------|---------| | ⊥
EYFLA7 | EYFLA7 | OK/NOK | None | | No Tool | No Tool | No Tool | No Tool | | None | None | None | None | | No Tool | No Tool | No Tool | No Tool | | None | None | None | None | | No Tool | No Tool | No Tool | No Tool | | None | None | None | None | | Learn | | Learn open | Exit | Figure 19: Empty slot selected On this screen, AccuPulse tools will show their model number in two-way mode "90". AccuPulse in one-way mode "90" and other tools do not report their model number and will be listed as "OK/NOK". When the Controller features differ between the tool type, they will be noted. ## Soft keys Tools may be highlighted by using the arrow keys to move the highlight to the desired tool or typing the number of the desired tool. When a learned tool is highlighted, the soft keys are: - 1. Replace Learn a new tool in place of the current tool in this slot. If you cancel out of the learn sequence, the current tool will remain in the slot. - 2. Edit [ENT] Go to the Tool Configuration screen for the selected tool. - 3. Learn open Starts the learn sequence for the empty tool slot with the lowest number. - 4. Exit [ESC] Returns to the Main Menu screen. When an empty tool slot is highlighted, the soft keys are: - 1. Learn [ENT] Starts the learn sequence for the highlighted tool slot. - 2. No function - 3. Learn open Starts the learn sequence for the empty tool slot with the lowest number. - 4. Exit [ESC] Returns to the Main Menu screen. ## **Tool Configuration** | Т | ool | 1 | | | | | |----------------------|---------|-----|-------|-------|------|-----| | Name: | Tool 1 | | | | | | | Radio Info: | CD2D v4 | .32 | | | | | | Serial number: | | | | | | | | Last calibration: | 0001-01 | -01 | 00:00 | :00 : | Set | Now | | Next calibration: | 0001-01 | -01 | 00:00 | :00 : | Set | Now | | Cycles: | 1 | | | | | | | Last PM at: | 0 | | | 5 | Set | Now | | -, | 250000 | | | | | | | Maint Interval (hr): | 0 | | | | | | | | | | | | | | | Forget | | Sav | е | Ca | ance | 1 | Figure 20: Tool Configuration screen Figure 21: Tool Configuration screen – Input tools ## Soft keys - 1. Forget Removes the tool from the unit. - 2. No function - 3. Save Saves changes made to the tool configuration. - 4. Cancel [ESC] Cancels changes made to the tool configuration. #### Name The tool name can be up to 25 numbers, letters, or decimal points. The tool name is shown on screen when running a parameter that uses the tool but is not reported to the network. #### Radio Info The radio info shows the radio address and the firmware version used by the radio to communicate with the Controller. The device has additional firmware to run the tool, but no information about this firmware is reported. Some features require a minimum radio version and tool firmware version. | Radio | Features new in the version | |---------|--------------------------------| | Version | | | 4.33 | Two-way functions | | 3.19 | Improved result buffering | | 3.17 | Tool enable/disable/antitheft. | This field cannot be edited. #### Serial Number The tool serial number can be up to 14 numbers, letters, or decimal points. The tool serial number is reported to the network with tightenings performed by the tool but is not shown anywhere on screen besides this menu. #### Last Calibration This field is used to store the date when the tool was last calibrated. The display order of this field is: #### year-month-day hour:minute:second This field must be updated manually when the tool is calibrated and is for informational purposes only. The date can be set to the current time in the Controller by selecting **Set Now** at the end of the Last Calibration row and pressing the ENT key. #### Next Calibration This field is used to store the date at which the tool should be recalibrated. The display order of this field is: #### year-month-day hour:minute:second This field must be updated manually when the tool is calibrated. The date can be set to the current time in the Controller by selecting **Set Now** at the end of the Next Calibration row and pressing the ENT key. This can be helpful when the recalibration period is a full month or year because you will only need to update the year or month. ## Cycles This field tracks the total number of cycles performed by the tool since it was learned to the box. This cycle count is incremented for both accepted and rejected cycles. This field cannot be edited. If the tool is forgotten and relearned, the cycle count
will restart at 0. #### Last PM at This field stores the cycle count at which the tool last received preventative maintenance. This field must be updated manually when the tool is serviced. The count can be set to the current cycle count by selecting **Set Now** at the end of the row and pressing the ENT key. ## Cycles before PM Range: 0 to 4,294,967,295 This field indicates the number of cycles between preventative maintenance for the tool. If this field is set to 0, no tracking of cycle counts for preventative maintenance is performed. #### Maint Interval Range: 0 to 99 This field indicates the maintenance interval in hours of run time for AccuPulse tools. Setting this field to 0 disables the maintenance interval setting in the tool. This field is not available for OK/NOK tools. ## Accept Input/Reject Input These fields indicate which inputs were defined as the inputs for the tool. An input tool must have an Accept Input to be used but may be used without a Reject Input. See the chapter on Discrete I/O for more information about how these are configured. These fields are only listed for input tools and cannot be edited. ## **Forgetting Tools** Each tool can only be associated with a single Controller at a time but learning a tool to another Controller does not automatically remove it from the previous Controller. If you have moved or are planning to move a tool from one EYFR03 to another, you should have the Controller "forget" the tool. To do so, press **Forget** on the Tool Configuration screen to remove the tool from the Controller. This will cause the Controller to no longer respond to the tool and will make any parameters using the tool and any groups or jobs using those parameters invalid. **If** you learn AccuPulse in one-way mode "90" and want to relearn it in two-way mode "91", you must "forget" the tool first. You cannot just "relearn". #### **Parameters** ## **Selecting Parameters** Figure 22: Main Menu - Parameters Figure 23: Choose Parameter screen ## Soft keys - 1. Select Select the currently highlighted parameter to run and return to the Run screen. Only available for selectable parameters. - 2. Edit Edit the currently highlighted parameter. - 3. Copy Selects the currently highlighted parameter to be copied to another location. - 4. Exit [ESC] Returns to the Main Menu screen. The Choose Parameter screen shows all the parameters in the unit in a 10x10 grid. Parameters may be highlighted by using the arrow keys to move the highlight to the desired parameter or typing the number of the desired parameter. Only the parameters with tools assigned will show their numbers on the grid. A selectable parameter will have a black number. A defined but not selectable parameter will be shown in red. A parameter is defined when a tool number is assigned to it. If the assigned tool number is an empty tool slot, because either no tool was ever learned or the previous tool was forgotten, the parameter will become unselectable. Because parameters 1-16 are locked to tools 1-16 respectively, they will be blank if the associated tool slot is empty. ## **Configuration Options** Parameter 1 Parameter 1 Tool: 1-Tool 1 S: 0 Lock on batch: ◀ No ▶ Batch: 2 Torque setting: Flush detection mode: Buzzer setting: Flush detection delay (s): **4** OK ▶ 2.9 LED light: Rundown error detecting: Variable speed control: Cross thread reduction: Retightening prevention (s):2.1 **4** 150 mm ▶ Save Figure 24: Parameter Edit screen – OK/NOK Figure 25: Parameter Edit screen – AccuPulse Figure 26: Parameter Edit screen - Input ## Soft keys - 1. Delete Deletes all information in the parameter and returns to the Choose Parameter screen. This button is not available for parameters 1-16. - 2. No function - 3. Save Saves changes to the parameter and returns to the Choose Parameter screen - 4. Cancel [ESC] Discards changes to the parameter and returns to the Choose Parameter screen #### Common Fields #### Name The parameter name can be up to 25 numbers, letters, or decimal points. The parameter name is shown on screen when running the parameter and reported to the network with tightenings performed in the parameter. #### Tool This setting controls which tool is used by this parameter. You must select a learned tool before a parameter can be used. Parameters 1-16 always use the tool of the same number. (Parameter 1 uses tool 1, parameter 2 uses tool 2, etc.). Parameters 17-100 may be assigned to use any desired tool. Multiple parameters may use the same tool. If the tool used by a parameter is forgotten, the parameter will become invalid. #### Batch Default: 1 Range: 1 to 255 This setting determines how many good tightenings must be performed in the parameter to complete a batch. #### Lock on batch Default: No This setting determines if the unit will lock or restart the parameter when a batch is completed. When set to Yes, the Controller will not restart the parameter when a batch is completed and will require a batch reset or parameter selection command to restart the parameter. When set to No, the Controller will restart the parameter when a batch is completed. This setting is ignored when running the parameter as part of a group or job. #### **OK/NOK Fields** ## Time between cycles Default: 0 Range: 0 to 9999 seconds This setting controls the minimum amount of time after an accepted tightening before another tightening should be accepted. Any additional tightenings performed within this time after an accepted tightening will be automatically considered a reject. #### Time between batches Default: 0 Range: 0 to 9999 seconds This setting controls the minimum amount of time after a batch completion before another tightening should be accepted. Any additional tightenings performed within this time after a batch completion will be automatically considered a reject. ## AccuPulse Fields ## Torque setting Default: 1 Range: 1 to 40 This setting controls the torque setting of the tool. #### Flush detection mode Default: 1 Range: 1 to 7 Set to 1 for applications with light load before snug point. Set to 7 for applications with heavy loads or varying joint rate before snug point. #### Buzzer setting **Default**: Off Range: Off, OK, NOK This setting controls the when the buzzer in the tool sounds. ## Flush detection delay Default: 0 Range: 0 to 30 seconds Delays Flush Torque Detection mode and ignores loads for a selected time period ## LED light Default: LED button Values: LED button, Trigger switch This setting controls how the LED on the tool is activated. #### Crossthread/Rehit detection Default: 0 Range: 0 to 3.0 seconds If the clutch is activated before the minimum runtime set by this setting, the tool alerts the operator to a NOK fastening. ## Variable speed control Default: Variable Values: Variable, Single This setting controls if the tool run speed can be controlled by use of the trigger. #### Cross thread reduction Default: Off Range: Off, On >360° Reverse This setting controls if the tool uses its cross-thread reduction behavior. ## Retightening prevention Default: 0 Range: 0 to 3.0 seconds This setting controls the amount of time the tool is prevented from operating after shut-off. #### Socket extension mode **Default**: None Range: None, 150mm, 250mm This feature adjusts tool's RPM during pulsing to improve accuracy when using an extension. #### Input Fields ## Time between cycles Default: 0 Range: 0 to 9999 seconds This setting controls the minimum amount of time after an accepted tightening before another tightening should be accepted. Any additional tightenings performed within this time after an accepted tightening will be automatically considered a reject. #### Time between batches Default: 0 Range: 0 to 9999 seconds This setting controls the minimum amount of time after a batch completion before another tightening should be accepted. Any additional tightenings performed within this time after a batch completion will be automatically considered a reject. # **Groups** ## Selecting Groups Figure 27: Main Menu - Groups Figure 28: Choose Group screen # Soft keys - 1. Select Select the currently highlighted group to run and return to the Run screen. Only available for selectable groups. - 2. Edit Edit the currently highlighted group. - 3. Copy Selects the currently highlighted group to be copied to another location. - 4. Exit [ESC] Returns to the Main Menu screen. The Choose Group screen shows all the groups in the unit in a 10x10 grid. Groups may be highlighted by using the arrow keys to move the highlight to the desired group or typing the number of the desired group. Only the groups with parameters assigned will show their numbers on the grid. A selectable group will have a black number. A defined but not selectable group will be shown in red. A group is defined when one or more parameters are assigned to it. A group will become unselectable if an assigned parameter is unselectable or multiple parameters in the group use the same tool. ## **Configuration Options** Figure 29: Group Edit screen ## Soft keys - 1. Delete Deletes all information in the group and returns to the Choose Group screen. - 2. Parameters Goes to the Group Parameter Select screen - 3. Save Saves changes to the group and returns to the Choose Group screen - 4. Cancel [ESC] Discards changes to the group and returns to the Choose Group screen #### Name The group name can be up to 25 numbers, letters, or decimal points. The group name is shown on screen when running the group but is not sent to the network. #### Lock on done Default: No This setting determines if the unit will lock or restart the group when the group is completed. When set to Yes, the Controller will not restart the group when all parameter batches are completed and will require a batch reset or parameter selection command to restart the group. When set to No, the Controller will restart the group when it completes. This setting is ignored when running the group as part of a job. #### Batch beep on
Default: Group <u>Values</u>: Group, Parameter This setting determines if the unit will sound the batch beep for each parameter in the group or only when the entire group is completed. The UI will show the batch color for each individual parameter when it completes regardless of this setting. #### Free run mode Default: No This setting determines if the group runs in standard or free run mode. When set to No, the group will run in standard mode. When set to Yes, the group will run in free run mode. In standard mode, all parameters in the group must complete their batches before any parameter can start a second batch. When a parameter completes, the tool used by that parameter will be disabled. When the whole group is completed and *Lock on done* is set to No, all tools used by parameters in the group will be enabled to run the group again. Standard mode is intended for applications where multiple parameters must all be run the same number of times. For example, a standard group could be used at a station with two operators that need to attach the left and right brakes to a vehicle. In this case, each vehicle must have both brakes attached, but there is no reason one must be attached before the other. However, each vehicle should have both brakes attached before the next vehicle is started. In free run mode, parameters in the group can run independently. When a parameter completes, it restarts immediately and may perform additional tightenings. In this mode, the *Lock on done* and *Batch beep on* settings are ignored. Free run mode is intended for applications where the Controller simply needs to report the tightenings from multiple tools but does not need to synchronize how much one tool runs compared to another. ## **Group Parameter Selection** Figure 30: Group Parameter Select screen ## Soft keys - 1. 1-8 Shows parameters slots 1-8 of the group - 2. 9-16 Shows parameter slots 9-16 of the group - 3. No function - 4. Exit [ESC] –Returns to the Group Edit screen Changes made on this screen are saved or discarded when exiting the Group Edit screen. #### Parameter column In the parameter column, you may select the parameters for the group by typing the number of the desired parameter in each row. The order on this screen determines the order they are shown on the Run screen but is otherwise not important. #### Batch column In the batch column, you may enter the batch size for the parameter when running it as part of the group. When a parameter is selected, this column will be filled with the batch currently defined in the parameter itself. Changing values in this column only affect the parameter while it EYFR03 User Manual Chapter 3: Configuring the unit is running in the group but does not change it in any other group or job or when the parameter runs on its own. ## **Jobs** ## **Selecting Jobs** Figure 31: Main Menu - Jobs Figure 32: Choose Job screen ## Soft keys - 1. Select Select the currently highlighted job to run and return to the Run screen. Only available for selectable jobs. - 2. Edit Edit the currently highlighted job. - 3. Copy Selects the currently highlighted job to be copied to another location. - 4. Exit [ESC] Returns to the Main Menu screen. The Choose Job screen shows all the jobs in the unit in a 10x10 grid. Jobs may be highlighted by using the arrow keys to move the highlight to the desired job or typing the number of the desired job. Only the jobs with steps assigned will show their numbers on the grid. A selectable job will have a black number. A defined but not selectable job will be shown in red. A job is defined when one or more parameters or groups are assigned to it. If an assigned parameter or group is unselectable or an assigned group is in free mode, the job will become unselectable. # **Configuration Options** Figure 33: Job Edit screen - 1. Delete Deletes all information in the job and returns to the Choose Job screen. - 2. Steps Goes to the Job Step Select screen - 3. Save Saves changes to the job and returns to the Choose Job screen 4. Cancel [ESC] – Discards changes to the job and returns to the Choose Job screen #### Name The job name can be up to 25 numbers, letters, or decimal points. The job name is shown on screen when running the job but is not sent to the network. ## Number of Steps Shows the number of steps currently defined in the job. #### Lock on done Default: No This setting determines if the unit will lock or restart the job when the job is completed. When set to Yes, the Controller will not restart the job when the last step completes. When set to No, the Controller will restart the job when it completes. #### Batch beep on Default: Job Values: Job, Parameter This setting determines if the unit will sound the batch beep for each step in the job or only when the entire job is completed. The UI will show the batch color for each individual parameter when it completes regardless of this setting. ## Job Step Selection Figure 34: Job Step Select screen ## Soft keys - 1. 11-20 Shows steps 11-20 of the group. When steps 11-20 are showing, this key changes to "21-30". When steps 21-30 are showing, this key changes to "1-10". - 2. Parameter Makes the selected step in the job a parameter step. - 3. Group Makes the selected step in the job a group step. - 4. Exit [ESC] –Returns to the Job Edit screen. Changes made on this screen are saved or discarded when exiting the Job Edit screen. # Parameter/Group column In the Parameter/Group column, you may select the parameter or group to run at each step in the job by typing the number of the desired parameter in each row. The P or G to the left of this column indicates whether a parameter or group is currently selected. To switch between a parameter and a group, use the soft keys. The order on this screen determines the order they are run in the job. Parameters and groups may be used multiple times within the same job. Groups in free run mode cannot be used in a job, since they would never complete and allow the job to continue. #### Batch column In the batch column, you may enter the batch size for the parameter steps when running it as part of the job. This column will be empty for group steps. When a parameter is selected, this column will be filled with the batch currently defined in the parameter itself. Changing values in this column only affect the parameter while it is running in the job but does not change it in any other group or job or when the parameter runs on its own. # **Network Settings** Figure 35: Main Menu - Network Settings Figure 36: Network Settings Menu -General **Figure 37: General Network Settings** # Soft keys - 1. No function - 2. No function - 3. Save Saves changes to the general network settings and returns to the Network Settings menu - 4. Cancel [ESC] Discards changes to the general network settings and returns to the Network Settings menu ### Changes to these settings only apply after the Controller is rebooted. See the protocol specific chapters for information about the configuration options for each protocol. # **Configuration Options** #### IP Address Default: 192.168.1.68 EYFR03 User Manual Chapter 3: Configuring the unit This setting controls the IP address of the Controller for Ethernet networks. #### Subnet Mask Default: 255.255.255.0 This setting controls the subnet mask for Ethernet networks. # Gateway Default: 192.168.1.13 This setting controls the default gateway setting for Ethernet networks. #### Use DHCP Default: no This setting determines if the controller will attempt to automatically acquire a network address or if it will use the one entered manually. When set to yes, the IP Address, Subnet Mask, and Gateway settings are ignored. # **Controller Settings** The Controller Settings screen contains the settings for the overall unit. Figure 39: Controller Settings – Page Figure 40: Controller Settings – Page # Soft keys - 1. Next Goes to the other page of the Controller Settings screen. - 2. Reset Defaults Goes to the Reset Defaults screen - 3. Save Saves changes made to the Controller configuration. - 4. Cancel [ESC] Cancels changes made to the Controller configuration. ### Page 1 #### Controller Name The Controller name can be up to 25 numbers, letters, or decimal points. The Controller name is sent to the network in the Controller Name field of various commands. #### Password The password can be up to 10 numbers. The "password" shown on this screen is a placeholder and does not necessarily represent the length of the actual password. To change the unit password, select the password field and press ENT, which will take you to the Enter new Password screen. If there is no password, this field will be blank. #### XBEE channel Default: 1 Range: 1 to 12 This setting controls which channel is used by the Controller radio. All tools learned to the Controller will be set to this channel automatically as part of the learn process. In general, this setting does not have to be changed, but if tool communication is not working reliably, changing this setting may improve communication. When a change to this setting is saved, the unit will go to the Channel Change screen to guide you through updating all learned tools to use the new channel. If you want the Controller to suggest a channel, you can press **Scan** to go to the XBEE Channel screen shown below. The radio frequencies used by each channel can be found in *Chapter 13: Product Specifications*. ### Beep on reject? Default: Yes This setting determines if the Controller will sound the beeper when a rejected tightening is received. The reject sound is one long beep. # Beep on batch? Default: Yes This setting determines if the Controller will sound the beeper when a batch is completed. The batch sound is four short beeps. When running a group or job, the beep controlled by this setting may be for each parameter batch or for the complete group or job. See the Groups and Jobs sections for more information about those settings. #### Beep on
cycle? Default: Yes This setting determines if the Controller will sound the beeper when an accepted tightening is received that would not trigger the batch sound. The cycle sound is two short beeps. #### Volume Default: 3 Range: 0 to 10 This setting controls the volume of the beeper. When set to 0, the beeper will not sound at all, regardless of the other *Beep on X* settings. A setting of 3 or below is recommended while using the Controller in an office or other environment without much background noise. # Reject timeout Default: 2 seconds Range: 0 to 10 seconds This setting controls how long the on-screen indication of a rejected tightening will be shown. When set to 0, the indication will remain until another tightening is received for the parameter or the Controller changes or stops the currently running operation. Partial seconds may be entered for this setting. Rejects are indicated by shading the screen red behind the parameter that received the reject. #### Batch timeout Default: 2 seconds Range: 0 to 10 seconds This setting controls how long the on-screen indication of a tightening that completes a batch will be shown. When set to 0, the indication will remain until another tightening is received for the parameter or the Controller changes or stops the currently running operation. Partial seconds may be entered for this setting. Batch completions are indicated by shading the screen blue or yellow behind the parameter that received the result to complete a batch. # Cycle timeout Default: 2 seconds Range: 0 to 10 seconds This setting controls how long the on-screen indication of an accepted tightening that was not the last in a batch will be shown. When set to 0, the indication will remain until another tightening is received for the parameter or the Controller changes or stops the currently running operation. Partial seconds may be entered for this setting. Cycles are indicated by shading the screen green behind the parameter that received the cycle. #### Time This row allows you to set the current time used by the unit. The display order of this field is: year-month-day hour:minute:second Each piece of the time may be edited by using the left and right arrows to select the various pieces of the time and the number keys to set the new value. #### Page 2 #### Bar code baud rate Default: 9600 <u>Values</u>: 9600, 19200, 38400, 57600, 115200 This setting should be set to match the baud rate used by a serial bar code reader, if one is used. If this setting is not configured correctly, bar codes will not be correctly processed. # Require VIN to run Default: No This setting determines if the Controller requires a VIN to be entered before tools will be allowed to run. When set to Yes, the Controller will be automatically suspended whenever there is no currently entered VIN. When set to No, the Controller will not check the VIN before allowing tools to run. A VIN may be entered through either the bar code scanner or a network command. The VIN may be cleared by a network command, a discrete input, or the *Clear VIN on batch* setting. If the VIN is cleared while an operation is running and this setting is set to Yes, the Controller will immediately suspend until a new VIN is entered. #### Clear VIN on batch Default: No This setting determines if the Controller automatically clears the VIN when a batch completes. When set to No, the Controller will never automatically clear the VIN. The VIN may still be cleared by other means, such as a network command or discrete input. When set to Yes, the Controller will clear the VIN when an operation completes, regardless of if the operation is set to repeat. When directly running a parameter, the VIN will be cleared when a batch is completed. When running a standard group, the VIN will be cleared when all parameters in the group have completed. When running a free group, the VIN will never be cleared. When running a job, the VIN will be cleared when the last step in the job is completed. #### No VIN match behavior Default: No Values: Continue, Stop, Ignore This setting determines how the Controller behaves if a VIN if a selection scan that does not match one of the defined selectors is received. The behavior of this option is described in *Chapter 4: Serial Communications*. # **NOK Options** Default: Report Values: Ignore, Display, Report, Count This setting determines how the unit will handle NOK results (or rejects). The following table summarizes the behavior for the different levels: EYFR03 User Manual Chapter 3: Configuring the unit 41 of 113 | Level | Beep ¹ | Show on
Screen | Store in
Flash | Report to
Network | Overall bad ² | Increment
Count | |---------|-------------------|-------------------|-------------------|----------------------|--------------------------|--------------------| | Ignore | No | No | No | No | No | No | | Display | Yes | Yes | No | No | No | No | | Report | Yes | Yes | Yes | Yes | No | No | | Count | Yes | Yes | Yes | Yes | Yes | Yes | - 1. Unit will only beep if Beep on reject is set to Yes and Volume is not 0. - 2. Overall bad will be indicated by shading the operation name on the top row of the Run screen yellow and will show yellow instead of blue in the parameter area when the parameter batch is completed. All results from tools that are not currently running are ignored, regardless of this setting. #### Batch Reset button Default: Show Values: Show, Hide This setting determines if the Batch Reset button is available on the Run screen. # Serial printer format Default: None Values: None, Line, CSV This setting determines the format used for serial printing of tightenings. # Bypass Verify Inputs Default: no This setting determines if the Verify Tool and Verify Socket inputs are ignored. See the Discrete I/O section of the manual for more information about the inputs. # Startup Operation Default: Last Values: Last, None This setting determines what operation will be run on unit startup. If set to Last, the last running operation when the unit turned off will be restarted at the beginning of the operation when the unit turns on. If set to None, the unit will be in the No active parameter state on startup. #### Tool On Time Default: 90 minutes Values: 20 to 720 minutes This setting determines how long an AccuPulse tool stays on without use before it sleeps. OK/NOK tools are not affected by this setting. #### Enter new Password Figure 41: Enter new Password screen ### Soft keys - 1. Remove Clears the unit password and returns to the Controller Settings screen. - 2. No function - 3. Save [ENT] Keeps changes to the password and returns to the Controller Settings screen. - 4. Cancel [ESC] Cancels changes made to the password and returns to the Controller Settings screen. The Enter new password screen allows you to change the password to a string of up to 10 digits. Note that the password entered on this screen will be shown in clear text as it is typed. Enter the new password by typing the desired series of digits and pressing **Save** or ENT. The new password will not be saved to permanent memory until saving from the Controller settings screen. If you decide not to change the password, press Cancel or ESC. You may completely remove the password from the unit by pressing **Remove**. Removing the password will allow unrestricted access to all functions of the unit until a new password is entered. If you only want to temporarily disable the password, use the **Exit** button on the Main Menu screen as described to return to the Run screen. # XBEE Channel Noise The XBEE Channel Noise screen will test each of the available channels to determine how much noise is already on those channels. The channel with the lowest amount of noise will be indicated by a blue bar. Figure 42: XBEE Channel Noise screen # Function keys - 1. No function - 2. No function - 3. Set Ch X [ENT] Selects the best channel and returns to the Controller Settings screen. - 4. RETURN [ESC] Returns to the Controller Settings screen without selecting a channel. The new channel will not be saved to permanent memory until saving from the Controller Settings screen. When a channel change is saved, the unit will go to the Channel Change screen to guide you through updating all learned tools to use the new channel after saving from the Controller Settings screen. # Serial Printer Field Selection Figure 43: Serial Printer Field Selection screen # Function keys - 1. PREVIOUS Move to the previous set of serial printer fields - 2. NEXT Move to the next set of serial printer fields - 3. SAVE Accepts the field selections and returns to the Unit Setup screen. - 4. CANCEL Returns to the Unit Setup screen without changing the selected fields. The new field selections will not be saved to permanent memory until saving from the Unit Setup screen. # **Reset Defaults** Figure 44: Reset Defaults screen # Soft keys - 1. Reset All Resets all configuration to factory defaults. - 2. No function - 3. Reset Resets the selected parts of the configuration to factory defaults. - 4. Cancel [ESC] Returns to the Controller Settings screen without resetting any configuration. The Reset Defaults screen allows you to restore the unit to the factory defaults. You may select some or all parts of the configuration to reset. Resetting some parts of the configuration may invalidate other parts that are not being reset. | Resetting | May invalidate | |---------------------|--------------------------| | Tools | Parameters, Groups, Jobs | | Parameters | Groups, Jobs | | Groups | Jobs | | Jobs | none | | Controller Settings | Tools ¹ | | Network Settings | none | | Tightenings | none | | Events | none | | I/O Config | none | | VIN Selections | none | - ¹ If the XBEE channel was changed from the default, the unit will go to the Channel Change screen to update the tools back to the default XBEE channel when resetting the default Controller settings. # **Channel Change** When you change the XBEE channel from the
Controller Settings screen, the unit will go to the Channel Change screen to update the learned tools with the new channel setting. Figure 45: Channel Change screen Figure 46: Channel Change, tool 1 complete Tools will need to be cycled to perform the channel change. Once all tools have been updated, the unit will return to the main menu. If you cannot perform the update on all learned tools at this time, you may press **Skip** to skip the tool. This will allow the unit to finish the channel change, but will leave any skipped tools on the previous channel. When you want to use the tools that were not updated, they must be updated to the correct channel by pulling the battery and replacing it in the tool. Make sure no other units are in learn mode when you do this, or the tool may learn to the other unit instead. The tool should reconnect to the unit on the new channel and return to normal function. #### **Events** Figure 47: Main menu – Logs Figure 48: Logs Menu screen – Network Figure 49: Network Log screen # Soft keys - 1. No function - 2. Previous Go to the previous page of more recent events. When on the first page, this key will be blank. - 3. Next [ENT] Go to the next page of older events. When on the last page, this key will be blank. - 4. Exit [ESC] Returns to the Run screen. The Events screen shows the log of non-tightening events that have occurred. More information is available via the PC software application. This screen shows: - Time The time the event occurred. The date is indicated at the top of the table and each time it changes. The current time is shown at the bottom of the screen for comparison. - Code The event code for this event. - Event The name of this event. - Source The source that caused the event. - Status The status of the event. 0 indicates success, non-zero indicates an error. # **Network Log** Figure 50: Main menu – Logs Figure 51: Logs Menu screen – Network Figure 52: Network Log screen # Function keys - 1. No function - 2. Previous Go to the previous page of more recent network events. When on the first page, this key will be blank. - 3. Next [ENT] Go to the next page of older network events. When on the last page, this key will be blank. - 4. Return [ESC] Returns to the Run Screen. The Network Log screen shows the log of network events that have occurred since the Controller started up. This log is not maintained across reboots or power cycles. This screen shows: - Time The time the event occurred. The date is indicated at the top of the table and each time it changes. The current time is shown at the bottom of the screen for comparison. - Source The remote IP address for this event. - Packet Information about the packet sent or received or network connection start/stop. # Chapter 4: Serial Communications # Introduction The EYFR03 has a DSUB-9 serial port that provides bar code reading and serial printing functionality. As the same connector is used for both functions, you will need a special Y-style cable if you want to attach both a barcode reader and a serial printer to the EYFR03 at the same time. | Pin | Usage | |-----|----------| | 2 | Receive | | 3 | Transmit | | 5 | Ground | ### **Barcode** The bar code functionality of the EYFR03 was developed and tested against the Symbol LS2208 bar code reader, which uses CODE39 bar codes. This format starts and ends all bar codes with an asterisk "*". The EYFR03 further specifies a format of data within the bar code. The data is grouped into sections, separated by a percent symbol "%". If the bar code data does not start and end with a percent symbol, it will be treated as a VIN number. The general structure for a command bar code is: *%<command>%<data>%* A VIN bar code is: *<VIN number>* The remainder of this chapter lists the bar code commands provided by the unit. Section headings are the command number followed by the command name. #### 1. Cell ID This command sets the Cell ID number reported by the unit in ACOP result messages. Data: number of up to 4 digits (0-9999) Example: *%01%4305%* This bar code would set the Cell ID of the unit to 4305. # 2. Channel ID This command sets the Channel ID number reported by the unit in ACOP result messages. Data: number of up to 2 digits (0-99) Example: *%02%19%* This bar code would set the Channel ID of the unit to 19. #### 3. Controller Name This command sets the Controller Name of the unit. Data: up to 25 characters Example: *%03%air - bag%* This bar code would set the Controller Name of the unit to "air - bag". ### 4. VIN This command sets the VIN or Identifier part 1 (VIN characters 1-25) reported by the unit in tightening result messages, the ACOP MID 0052 Vehicle ID Number, and the ACOP MID 0152 Multiple identifier and result parts notifications. Data: up to 25 characters Example: *%04%VIN1234567%* As mentioned above, a bar code is assumed to be a VIN number if the data is not in the command format. As such, the same VIN could be provided as: *VIN1234567* ### 5. Start Job This command instructs the unit to select a job. Any other running parameter, group, or job will be stopped before starting the new job. <u>Data:</u> number of up to 3 digits specifying the job number to run (1-100) Example: *%05%32%* This bar code would instruct the unit to start job number 32. # 6. Identifier part 2 This command sets the Identifier part 2 (VIN characters 26-50) reported by the unit in tightening result messages and the ACOP MID 0152 Multiple identifier and result parts notifications. Data: up to 25 characters Example: *%06%B23FJ9S3%* ### 7. Identifier part 3 This command sets the Identifier part 3 (VIN characters 51-75) reported by the unit in tightening result messages and the ACOP MID 0152 Multiple identifier and result parts notifications. Data: up to 25 characters #### Example: #### *%07%GU49CN53%* # 8. Identifier part 4 This command sets the Identifier part 4 (VIN characters 76-100) reported by the unit in tightening result messages and the ACOP MID 0152 Multiple identifier and result parts notifications. Data: up to 25 characters Example: *%08%RU39CN53%* # 10. Reset batch count This command resets the count of all currently running parameters on the unit. Data: none Example: *%10%%* To reset the batch count of a single parameter when running a group with multiple parameters, use command 30. Reset parameter batch count. ### Start Parameter This command instructs the unit to start a parameter. Any other running parameter, group, or job will be stopped before starting the new parameter. Data: number of up to 3 digits specifying the parameter number to select (1-100) Example: *%11%73%* This bar code would select parameter 73. # 12. Start Group This command instructs the unit to select a group. Any other running parameter, group, or job will be stopped before starting the new group. Data: number of up to 3 digits specifying the group number to select (1-100) Example: *%12%26%* This bar code would select group 26. ### 13. Stop This command instructs the unit to stop any running parameter, group, or job. Data: none EYFR03 User Manual 51 of 113 v1.6.122 March 2021 ### 30. Reset parameter batch count This command resets the count of the specified parameter. If the specified parameter is not running, this bar code is ignored. Data: number of up to 3 digits specifying the parameter number to reset the batch (1-100) Example: *%30%35%* This bar code would reset the current batch count of parameter 35. To reset all batch counts at once, use command 10. Reset batch count. # **Serial Printer** The EYFR03 provides serial printer output in two formats, line and CSV. The EYFR03 will print tightenings based on the format selected on the second page of the Unit Setup menu. Additionally, rejects may not be printed based on the Report to Network column of the NOKs setting table. Both line and CSV formats contain the following fields in the same order: - VIN - Controller Name - Cell ID - Tightening ID - Time - Job Number - Job Sequence Number - Parameter Number - Parameter Name - Last Parameter Write Time - Tool Number - Tool Name - **Tool Serial Number** - OK/NOK - Result - Count - Batch - **Batch Status** 22 March 2021 ### **VIN Selections** Starting with version 1.2.5, you may configure the EYFR03 to use VIN barcode scans to select a parameter, group, or job. The selections must be configured via the Assembly Manager program. Both the Atlas Copco Open Protocol and EtherNet/IPTM can provide a VIN to the EYFR03. VINs received from these protocols will still be placed in the VIN field, but they are ignored by the VIN selection feature. If a network is able to provide VINs, it is expected that the network will also control the selection of operations through one of the mechanisms provided in that protocol. # <u>Settings</u> #### No match behavior **Default**: Continue <u>Values</u>: Continue, Stop, Ignore This setting determines what happens when a selector scan does not match one of the VIN selections. When set to Continue, the EYFR03 will store the scan in its Selector field, but will not stop or change the running operation for a non-matching scan. When set to Stop, the EYFR03 will discard the scan and blank both the Selector and VIN fields and will stop the running operation for a non-matching scan. When set to Ignore, the EYFR03 will ignore any selector scans that do not match one of the VIN selections and act as if the scan never occurred. #### Selection mode Default: Single Scan <u>Values</u>: None, Single Scan, Dual Scan, VIN then Selector, Selector then VIN This setting determines the mode the EYFR03 uses for the VIN Selection feature. The modes will be described in more detail in the next section. #### Second scan timeout Default: 5 Range: 0-99 seconds This setting determines how long the EYFR03 will wait for a second scan when using one of the selection modes requiring two scans. If a valid second scan is not received during the timeout, the EYFR03 will discard the first scan, and if No match behavior
is Stop, will also stop the running operation. #### VIN length Default: Variable Values: Variable, Fixed (1-25 characters) This setting determines how long a scan must be to be considered a valid VIN. When set to Variable, any scan length up to 25 characters is allowed. When running in None mode, this setting allows you to specify the length of a VIN scan without using the rest of the VIN Selections features. # Selector length Default: Variable <u>Values</u>: Variable, Fixed (1-25 characters) This setting determines how long a scan must be to be considered a valid selector. When set to Variable, any scan length up to 25 characters is allowed. When running in None or Single Scan modes, this setting is ignored. #### Characters to match This setting is used to specify which characters in a scan the EYFR03 should look at when comparing against the selection list. You may select some or all the characters and are allowed to have gaps between matched characters if needed. #### VIN Selection Matches Each entry in the VIN Selection Match list has a few values that you can set. *Match* – The string of characters that must be found in the scan. Type – The type of item to be selected for a matching selector. One of Parameter, Group, or Job. *Number* – The item number to be selected for a matching selector. 1-100. *Batch* – If selecting a batch, the batch size to use for a matching selector. 0 to use the batch size defined in the parameter, or 1-255 to override the batch size defined in the parameter. # Match Examples Consider the following selectors: 1FV6HLBAXP 1**FV**PP3**B**X5M J**H2**RC4**4**1X2 To have the EYFR03 look at the marked (bold/underline) characters in the scans for its match, you would select characters 2, 3, and 7 as the Characters to match. To match the first two scans, you would enter "FVB" for the Match field in the selection list. To match the third scan, you would enter "H24" for the Match field in the selection list. ### **Selection Modes** The EYFR03 will use one of several modes to determine how it uses the VIN to make selections: #### None No selections are made based on barcode scans. The VIN length setting will still be used to validate VIN scans, but the EYFR03 will not select an operation based on the scan. If you want to keep the defined list of selections, but temporarily not use them, put the EYFR03 in this mode. # Single Scan All scans are treated as both VINs and selectors. The selector length setting is not used in this mode, and only scans matching the VIN length will be processed. The EYFR03 will check each scan against its selection list for a match and start the appropriate operation if a match is found. #### Dual Scan Scans are treated as either VINs or selectors based on their length. The VIN and selector lengths must be different to use this mode. The VIN length or selector length may be variable, but not both. Any scan that matches the VIN length (or does not match the selector length, if the VIN is variable length) will be put in the VIN field but will not cause the EYFR03 to select an operation. The EYFR03 will check any scan that matches the selector length (or does not match the VIN length, if the selector is variable length) against its selection list for a match and start the appropriate operation if a match is found. #### Selector then VIN The EYFR03 will require a selector scan first followed by a VIN scan. In this mode, the VIN and selector lengths may be the same or different. While the EYFR03 is waiting for the first scan, it will ignore any scans that do not match the selector length. Once a valid length scan is found, the EYFR03 will process it as a selector, checking it against the selection list for a match but not immediately starting the matching operation. If the scan is a match or the No match behavior is Continue, the EYFR03 will start waiting for a VIN scan. Once a valid length scan is found, the EYFR03 will start the matching operation from the selector scan. #### VIN then Selector The EYFR03 will require a VIN scan first followed by a selector scan. In this mode, the VIN and selector lengths may be the same or different. While the EYFR03 is waiting for the first scan, it will ignore any scans that do not match the VIN length. Once a valid length scan is found, the EYFR03 will store it as the VIN and start waiting for a selector scan. Once a valid length selector scan is found, the EYFR03 will process it as a selector, checking it against the selection list for a match and starting the matching operation if a match is found. # Chapter 5: Discrete I/O # Introduction The EYFR03 provides assignable I/O connections. Most of the I/O will be provided by additional devices. These devices will be connected via the 5-pin remote connector and can be chained to provide as much or as little I/O as is needed. The EYFR03-A includes some I/O in the unit (8 inputs, 12 outputs). A matching cable for this connector is also available. # **Discrete I/O Specifications** # **Electrical Specifications** Opto-Isolated Inputs | Item | Value | | | Unit | |-----------|-------|-----|-----|------| | | min | typ | max | | | Voltage | 3.3 | 24 | 24 | V DC | | Current | | 20 | 60 | mA | | Impedance | | 1.5 | | ΚΩ | Relay Outputs | totaly compare | | | | | |----------------|-----------------|-------|--------------|--| | Item | | Value | Unit | | | Derrigantost | Voltage | 24 | V DC | | | Dry contact | Current (each) | 2 | A | | | Wet contact | Voltage | 24 | V DC (fixed) | | | | Current (each) | 2 | A | | | | Current (total) | 2 | A (fused) | | # **Pinout** Figure 53: I/O Connector Pinout | Number | Type | Wire color | Function | |--------|--------|--------------|----------| | 1 | Output | White | Relay 1 | | 2 | Output | White/Yellow | Relay 2 | | 3 | Output | White/Green | Relay 3 | | 4 | Output | White/Red | Relay 4 | | 5 | Output | White/Blue | Relay 5 | | 6 | Output | White/Orange | Relay 6 | | 7 | Output | White/Grey | Relay 7 | | 8 | Output | White/Purple | Relay 8 | | 9 | Output | Red | Relay 9 | | 10 | Output | Red/Black | Relay 10 | | 11 | Output | Red/Yellow | Relay 11 | |----|--------|-----------------|--------------| | 12 | Output | Red/Green | Relay 12 | | 13 | Input | Blue | Opto 1 | | 14 | Input | Black | Opto 2 | | 15 | Input | Pink | Opto 3 | | 16 | Input | Green | Opto 4 | | 17 | Input | Orange | Opto 5 | | 18 | Input | Yellow | Opto 6 | | 19 | Input | Grey | Opto 7 | | 20 | Input | Purple | Opto 8 | | 21 | Power | White/Black | +24 VDC | | 22 | Power | White/Black/Red | Relay common | | 23 | Power | Dark Brown | Opto common | | 24 | Power | Light Brown | Ground | Because the opto inputs and relay outputs may be assigned to a variety of functions, as detailed in the following sections, this table can only show the location of the relays and optos. # **Common Points** All inputs share a single common. To use the box ground as the common, connect Ground (pin 24) to Opto common (pin 23) on the I/O connector. All relays share a common point. By default, the relays are configured in a dry contact configuration. To convert the unit to wet contacts, connect +24 VDC (pin 21) to Relay common (pin 22) on the I/O connector. This makes all outputs wet contacts; the unit does not support configurations with some wet and some dry contacts. # **Equivalent Circuit** # **Assigning I/O Functions** The inputs and outputs must be configured before use. By default, the unit does not ship with any relay configuration. To configure the inputs and outputs, you will need to use the PC software application. ### I/O Status Figure 54: I/O Status screen The I/O Status screen shows the current state of the physical inputs and outputs to the EYFR03. If you have not configured the I/O, this screen will just say "I/O not configured" instead of showing the inputs and outputs as pictured above. If you have configured the I/O and this screen shows another message, please contact product support. Once the I/O is configured, the screen will show the state of each input. A high input or output will be filled in with green. A low input or output will be filled with yellow. # **Inputs** The inputs of the EYFR03 Controller take 3.3-24VDC and have low current drain. The discrete I/O has a single common pin for all inputs and a signal pin for each input. The inputs can be used to select an item to run or control the Controller. The selection inputs should not be used when the unit is being controlled by a network protocol, as this will generally result in unexpected behavior. Some control inputs, notably the suspend input, may also cause unexpected behavior when used along with a network. # Selection inputs #### Select Parameter #X Inputs used: 1 per parameter This input selects a parameter when activated. One version of this input exists for each of the 100 available parameters (Select Parameter 1, Select Parameter 2, etc.). If the parameter is not configured with a valid tool, activating an assigned input will do nothing. Deactivating the input does not stop the parameter. The parameter will remain selected until the parameter is stopped, or another parameter, group, or job is selected. # Select Group #X Inputs used: 1 per group This input selects a group when activated. One version of this input exists for each of the 100 available groups (Select Group 1, Select Group 2, etc.). If the group is not configured with one or more valid parameters, activating an assigned input will do nothing. Deactivating the input does not stop the group. The group will remain selected until the group is stopped, or another parameter, group, or job is selected. #### Select Job #X Inputs used: 1 per job This input selects a job when activated. One version of this input exists for each of the 100 available jobs (Select Job 1, Select Job 2, etc.). If the job is not configured, activating an assigned input will do nothing. Deactivating the input does not stop the job. The parameter will remain selected until the job is stopped, or
another parameter, group, or job is selected. # Select Parameter (binary) Inputs used: up to 7 This group of inputs is used together to select a parameter. The inputs are read together as a binary number to determine which parameter to activate. The current parameter will remain selected until the inputs correspond to another configured parameter, the parameter is stopped, or another parameter, group, or job is selected. The number of required inputs depends on the maximum parameter that will be selected. See the *Binary selection of operations* section below for more details about how to assign this field. # Select Group (binary) Inputs used: up to 7 This group of inputs is used together to select a group. The inputs are read together as a binary number to determine which group to activate. The current group will remain selected until the inputs correspond to another configured group, the group is stopped, or another parameter, group, or job is selected. The number of required inputs depends on the maximum group that will be selected. See the *Binary selection of operations* section below for more details about how to assign this field. # Select Job (binary) Inputs used: up to 7 This group of inputs is used together to select a job. The inputs are read together as a binary number to determine which job to activate. The current job will remain selected until the inputs correspond to another configured job, the job is stopped, or another parameter, group, or job is selected. The number of required inputs depends on the maximum parameter that will be selected. See the *Binary selection of operations* section below for more details about how to assign this field. # Stop Operation Inputs used: 1 This input is used to stop the currently running operation when activated and put the unit into a No Active Parameter state. # **Control Inputs** # Suspend Controller Inputs used: 1 This input is used to suspend the Controller. When this input is activated, all tools will be disabled and no results will be accepted. While this input remains active, parameters, groups, or jobs can be started, but the associated tools will not be enabled until this input is deactivated. # Suspend Tool #X Inputs used: 1 per tool This input is used to suspend an individual tool. When this input is activated, the associated tool will be disabled and no results will be accepted. This input is most useful when running a group in free run mode. Suspending individual tools within a free run group allows running multiple tools simultaneously and independently while still retaining the ability to disable a single tool. #### Batch Reset Inputs used: 1 This input is used to reset the batch of the running operation. If the current operation is a group, the batch count for all parameters in the group will be reset. If the current operation is a job, the batch count for the current step in the job will be reset. If the job was completed but not automatically restarted, the whole job will be restarted. ### Operation Reset Inputs used: 1 This input is used to reset the running operation. This input is the same as Batch Reset, except when running a job. When a job is running, activating this input will restart the entire job at the first step, regardless of where the Controller was in the job. #### Clear VIN Inputs used: 1 This input is used to clear the VIN from the Controller. This input will clear the VIN regardless of the source that initially provided it (bar code or Ethernet). #### Clear ID Part 2 Inputs used: 1 This input is used to clear the ID Part 2 field from the Controller. This input will clear the ID Part 2 regardless of the source that initially provided it (bar code or Ethernet). # Clear ID Part 3 Inputs used: 1 This input is used to clear the ID Part 3 field from the Controller. This input will clear the ID Part 3 regardless of the source that initially provided it (bar code or Ethernet). #### Clear ID Part 4 Inputs used: 1 This input is used to clear the ID Part 4 field from the Controller. This input will clear the ID Part 4 regardless of the source that initially provided it (bar code or Ethernet). #### Clear All Identifiers Inputs used: 1 This input is used to clear the VIN and ID Parts 2-4 fields from the Controller. This input will clear the identifiers regardless of the source(s) that initially provided them (bar code or Ethernet). # Bypass VIN Inputs used: 1 This input is used to bypass the requirement to have a VIN entered to perform an operation. While this input is active, the "Require VIN to run" Controller setting is ignored. If this input is deactivated during an operation while the Require VIN setting is set to Yes and no VIN is entered, the unit will be suspended. ### Verify Tool #X Inputs used: 1 per tool This input is used to verify an individual tool. When this input is activated, the associated tool will be assumed to be pulled from its tray. When a verify tool input is defined, a parameter will be suspended until only the correct tool is pulled from its tray. If a group is running, all tools active in the group must be pulled. # Verify Socket #X Inputs used: 1 per socket This input is used to verify a socket. When this input is activated, the associated socket will be assumed to be pulled from its tray. When a verify socket input is defined, any parameters with a socket specified will be suspended until only the correct socket is pulled from its tray. If a group is running, all sockets associated with the parameters in the group must be pulled. # **Tool Inputs** # Tool #X Accept Inputs used: 1 per tool This input is used to define an input tool within the EYFR03, which can be inserted into a parameter to allow the EYFR03 to monitor the operation of an external device. # Tool #X Reject Inputs used: 1 per tool This input is used along with a Tool X Accept input to define an input tool within the EYFR03. The reject input is not required, but can be used if the external device reports reject conditions that should be monitored. # Binary selection of operations The binary selection inputs, Select Parameter (binary), Select Group (binary), Select Job (binary), and Select Item, allow you to select the number of inputs to use. The more inputs that are used, the more items you can select. | Number of Inputs | Number of Selectable Items | |------------------|----------------------------| | 1 | 1 | | 2 | 3 | | 3 | 7 | | 4 | 15 | | 5 | 31 | | 6 | 63 | | 7 | 100 | The number of selectable items is also the maximum item number selectable for the number of inputs. For example, with 3 inputs, you can only select parameters 1-7, not any combination of 7 parameters. # **Outputs** The outputs of the EYFR03 Controller are 24VDC relays that can provide a total of 2A across all outputs. The discrete I/O has a single common pin for the high side of all relays and a signal pin for each output. The outputs can be used to report the status of the Controller. #### Parameter #X Active Inputs used: 1 per parameter This output indicates when a parameter is active, either because it was selected directly or as part of a group or job. One copy of this field exists for each of the 100 available parameters. The output will remain active while the unit is suspended if the associated parameter is selected. #### Group #X Active Inputs used: 1 per group This output indicates when a group is active, either because it was selected directly or as part of a job. One copy of this field exists for each of the 100 available groups. The output will remain active while the unit is suspended if the associated group is selected. #### Job #X Active Inputs used: 1 per job This output indicates when a job is active. One copy of this field exists for each of the 100 available jobs. The output will remain active while the unit is suspended if the associated job is selected. # Parameter Active (binary) Inputs used: up to 7 This group of outputs is used together to indicate the number of the currently selected parameter. The outputs are read together as a binary number to determine which parameter, if selected, is active. This field will only have a value if a parameter was selected directly and will not indicate parameters activated as part of a group or job. When a parameter is not selected directly, this output group will read as 0. The value of this field will not be cleared during suspend. The number of required outputs depends on the maximum parameter that will be indicated. See the "Binary representation of active operations" section below for more details about how to assign this field. # Group Active (binary) *Inputs used: up to 7* This group of outputs is used together to indicate the number of the currently selected group. The outputs are read together as a binary number to determine which group, if any, is selected. This field will only have a value if a group was selected directly and will not indicate groups activated as part of a job. When a group is not selected directly, this group of outputs will read as 0. The value of this field will not be cleared during suspend. The number of required outputs depends on the maximum group that will be indicated. See the "Binary representation of active operations" section below for more details about how to assign this field. # Job Active (binary) Inputs used: up to 7 This group of outputs is used together to indicate the number of the currently selected job. The outputs are read together as a binary number to determine which job, if any, is selected. When a job is not selected, this group of outputs will read as 0. The value of this field will not be cleared during suspend. The number of required outputs depends on the maximum job that will be indicated. See the "Binary representation of active operations" section below for more details about how to assign this field. #### Tool #X Active Inputs used: 1 per tool This output indicates when a tool is active. A tool is active whenever a parameter that uses it is active,
either because the parameter was selected directly or as part of a group or job. One copy of this output exists for each of the 16 available tools. The output will remain active while the unit is suspended if the associated tool was in use at the time of suspend. # Controller Suspended Inputs used: 1 This output indicates if the Controller is currently suspended. # Tool #X Cycle Accept Inputs used: 1 per tool This output will be activated every time the tool performs an accepted tightening. This output will also trigger for the last cycle in a batch. This output is a momentary output. The duration this output will be active is determined by the Cycle Timeout Controller setting. If the Cycle Timeout is set to 0, this output will behave as a latching output and will remain active until another tightening is performed by the tool or the parameter using the tool is stopped. # Tool #X Cycle Reject Inputs used: 1 per tool This output will be activated every time the tool performs a rejected tightening. This output is a momentary output. The duration this output will be active is determined by the Reject Timeout Controller setting. If the Reject Timeout is set to 0, this output will behave as a latching output and will remain active until another tightening is performed by the tool or the parameter using the tool is stopped. #### Tool #X Batch Inputs used: 1 per tool This output will be activated every time the tool completes a batch. This output is a momentary output. The duration this output will be active is determined by the Batch Timeout Controller setting. If the Batch Timeout is set to 0, this output will behave as a latching output and will remain active until another tightening is performed by the tool or the parameter using the tool is stopped. # **Operation Complete** Inputs used: 1 This output will be activated every time an operation completes. If a single parameter is running outside a group or job, this output will match the Tool #X Batch output of the tool in the parameter. When running a group, this output will be triggered when all parameters in the group are completed. If a group is in free run mode, this output will never be triggered as the group is never considered completed. When running a job, this output will be triggered when the last step in the job is completed. This output is a momentary output. The duration this output will be active is determined by the Batch Timeout Controller setting. If the Batch Timeout is set to 0, this output will behave as a latching output and will remain active until another tightening is performed or another operation is started. # Binary representation of active operations The binary outputs, Parameter Active (binary), Group Active (binary), and Job Active (binary), allow you to select the number of outputs to use. The more outputs that are used, the more items you can represent. | Number of Outputs | Number of Items | |-------------------|-----------------| | 1 | 1 | | 2 | 3 | | 3 | 7 | | 4 | 15 | | 5 | 31 | | 6 | 63 | | 7 | 100 | The number of representable items is also the maximum item number representable for the number of outputs. For example, with 3 outputs, you can only represent parameters 1-7, not any combination of 7 parameters. If an item past the maximum number of items is active, the outputs will show the low bits of the active item number's binary representation. # Chapter 6: Atlas Copco Open Protocol ### Introduction This chapter describes the support for the Atlas Copco Open Protocol in the EYFR03. Command MIDs and revisions referred to in this document are from the Atlas Copco Open Protocol Specification release 1.3 revision 1. # **Using Groups with Atlas Copco Open Protocol** The group features of the EYFR03 are not defined directly in the protocol specification. Instead, they are represented as jobs when using this protocol. To reference a group instead of a job in one of the job commands, add 300 to the group number. To represent groups, you must use a revision that uses 4 characters for the job number. For example, sending MID 0038 Select Job with a job number of 7 will select Job 7 in the unit. Sending MID 0038 with "job number" of 306 will select Group 6 in the unit. If groups 1, 2, and 3 and jobs 10, 11, and 12 are defined in the unit, MID 0030 Job ID Upload request would return "jobs" 10, 11, 12, 301, 302, and 303 in the reply. Similarly, the MID 0034 Job Info subscription will give a message with "job number" 305 when group 5 is selected in the unit. # **Configuration Options** Figure 55: Main Menu - Network Settings Figure 56: Network Settings Menu - ACOP Figure 57: ACOP Settings # Keep Alive Range: 0 to 3600 seconds Default: 30 seconds This setting controls how long in seconds the unit will keep a connection open without any commands. This value is recommended to be more than twice the rate at which the client will send keep alive packets to ensure the connection is not closed due to a single missed keep alive packet. For example, if the client is configured to send keep alive packets at a 20 second interval, the keep alive setting on the unit should be more than 40 seconds. The keep alive function can be disabled by setting the keep alive to 0. When set keep alive is set to 0, the unit will not close an ACOP connection due to inactivity. #### Ack Timeout Range: 0 to 3600 seconds Default: 10 seconds This setting controls how long the Controller will wait for a response from the client when sending a subscription notification packet, such as MID 0015 or MID 0061. If no response is received within the specified ack timeout, the Controller will try again, up to the specified number of retries. If no response is received after all retries, the ACOP connection is considered broken and will have to be re-established. This will terminate all subscriptions that were established on that connection, regardless of which one did not receive a response. #### Retries Range: 0 to 10 Default: 3 This setting controls how many times the Controller will resend a subscription notification packet, such as MID 0015 or MID 0061, to the client. If no response is received within the specified ack timeout, the Controller will try again, up to the specified number of retries. If no response is received after all retries, the ACOP connection is considered broken and will have to be re-established. This will terminate all subscriptions that were established on that connection, regardless of which one did not receive a response. # Transmit Rejects Default: Yes This setting determines if reject tightenings are sent to the ACOP network. If set to Yes, all tightenings will be sent to the network. If set to No, only accepts will be sent to the network, both cycles and batch completes. This setting does not affect if rejects are logged to the unit storage and has no effect if the Controller NOKs setting is not set to Report or Count. #### Port Range: 0 to 65535 Default: 4545 This setting controls the Ethernet port on which the unit listens for ACOP connections. #### Cell ID Range: 0 to 9999 Default: 0 This setting controls the value put in the Cell ID field of ACOP commands such as MID 0001 and 0061. #### Channel ID Range: 0 to 99 Default: 0 This setting controls the value put in the Channel ID field of ACOP commands such as MID 0001 and 0061. EYFR03 User Manual 70 of 113 Chapter 6: Atlas Copco Open Protocol 22 March 2021 #### Enable OP Control ### Default: Yes This setting determines if the unit will respond to "Open Protocol control" commands. These commands are generally the ones that control unit operation or modify configuration. When this setting is set to Yes, all supported commands listed below are handled. When set to No, the following MID commands will return an error: - 0018 Parameter Select - 0019 Parameter Batch Size - 0020 Parameter Reset Batch - 0038 Job Select - 0039 Job Restart - 0042 Tool Disable - 0043 Tool Enable - 0050 VIN Download - 0082 Write Time - 0127 Job Abort - 0130 Job Off - 0150 Multi ID Download - 0156 Reset Latest Identifier - 0157 Reset All Identifiers #### Protocol Mode #### Default: 1 This setting determines the mode used by the Controller for Open Protocol connections. This setting should be left on the default unless specifically advised otherwise by the factory. # Lock operation in progress #### Default: no This setting determines if a new operation can be selected while one is partially completed. If set to no, any parameter or job selection command will cause the new operation to be started immediately. If set to yes, a parameter or job selection command will be ignored if one or more results have been performed in the current operation. To select a new operation while this setting is set to yes, you must first ensure the count is 0 (and if running a job, in the first step of a job) by either selecting the command after the batch or job is completed or by issuing a batch reset command to clear the count of a running parameter. # **Supported Commands** Revision lists with a '*' indicate that one or more revisions of the MID is not supported. Otherwise, the listed supported revisions are all revisions in the specification version mentioned above. | MID | Revisions | Command | |-----------|-----------|--| | 0001,0002 | 1-4 | Communication start (acknowledge) | | 0003 | 1 | Communication stop | | 0004 | 1 | Command error | | 0005 | 1 | Command accepted | | 0006 | 1 | Application data message request | | 0010,0011 | 1 | Parameter set ID upload request/reply | | 0012,0013 | 1-2* | Parameter set data upload request/reply | | 0014-0017 | 1 | Parameter set selected (subscribe/acknowledge/unsubscribe) | | 0018 | 1 | Select Parameter set | | 0019 | 1 | Set Parameter set batch size | | 0020 | 1 | Reset Parameter set batch counter | | 0030,0031 | 1-2 | Job ID upload request/reply | | 0032,0033 | 1-3 | Job data upload request/reply | | 0034-0037 | 1-4 | Job info
(subscribe/acknowledge/unsubscribe) | | 0038 | 1-2 | Select Job | | 0039 | 1-2 | Job restart | | 0040,0041 | 1-4 | Tool data upload request/reply | | 0042 | 1 | Disable tool | | 0043 | 1 | Enable tool | | 0050 | 1 | Vehicle ID Number download request | | 0051-0054 | 1-2 | Vehicle ID Number (subscribe/acknowledge/unsubscribe) | | 0060-0063 | 1-4* | Last tightening result data (subscribe/acknowledge/unsubscribe) | | 0064,0065 | 1-4* | Old tightening result upload request/reply | | 0070-0073 | 1 | Alarm (subscribe/acknowledge/unsubscribe) | | 0080,0081 | 1 | Read time upload request/reply | | 0082 | 1 | Set Time | | 0127 | 1 | Abort Job | | 0130 | 1 | Job off | | 0150 | 1 | Identifier download request | | 0151-0154 | 1 | Multiple identifier and result parts (subscribe/acknowledge/unsubscribe) | | 0156 | 1 | Reset latest Identifier | | 0157 | 1 | Reset all Identifiers | | 0270 | 1 | Controller reboot request | | 0420-0423 | 1 | Open Protocol commands disabled (subscribe/acknowledge/unsubscribe) | | 2500 | 1 | Tightening Program Message download | | 2501 | 1 | Tightening Program Message upload | | 9999 | 1 | Keep alive message | # **Unsupported Commands** If revisions are listed for a MID, there are other revisions for that MID that are supported. Otherwise, the entire command is unsupported. | Otherwise, the entire command is unsupported. | | | | | |---|-------------|--|--|--| | MID | Revisions | Command | | | | 0012,0013 | 3 | Parameter set data upload request/reply | | | | 0021-0024 | | Lock at batch done (subscribe/acknowledge/unsubscribe) | | | | 0025 | | Parameter user set download request | | | | 0044 | | Disconnect tool request | | | | 0045 | | Set calibration value request | | | | 0046 | | Set primary tool request | | | | 0060-0063 | 5-6,998,999 | Last tightening result data (subscribe/acknowledge/unsubscribe) | | | | 0064,0065 | 5-6 | Old tightening result upload request/reply | | | | 0074,0075 | | Alarm acknowledged on controller (acknowledge) | | | | 0076,0077 | | Alarm status (acknowledge) | | | | 0078 | | Acknowledge alarm remotely on controller | | | | 0090-0093 | | Multi-spindle status (subscribe/acknowledge/unsubscribe) | | | | 0100-0103 | | Multi-spindle result (subscribe/acknowledge/unsubscribe) | | | | 0105 | | Last PowerMACS tightening result data subscribe | | | | 0106 | | Last PowerMACS tightening result Station data | | | | 0107 | | Last PowerMACS tightening result Bold data | | | | 0108 | | Last PowerMACS tightening result data acknowledge | | | | 0109 | | Last PowerMACS tightening result data unsubscribe | | | | 0110 | | Display user text on compact | | | | 0111 | | Display user text on compact Display user text on graph | | | | 0113 | | | | | | 0120 | | Flash green light on tool Job line control info subscribe | | | | 0120 | | | | | | | | Job line control started | | | | 0122 | | Job line control alert 1 | | | | 0123 | | Job line control alert 2 | | | | 0124 | | Job line control done | | | | 0125 | | Job line control info acknowledge | | | | 0126 | | Job line control info unsubscribe | | | | 0128 | | Job batch increment | | | | 0129 | | Job batch decrement | | | | 0131 | | Set Job line control start | | | | 0132 | | Set Job line alert 1 | | | | 0133 | | Set Job line alert 2 | | | | 0140 | | Execute dynamic Job request | | | | 0155 | | Bypass Identifier | | | | 0200 | | Set externally controlled relays | | | | 0210-0213 | | Status externally monitored inputs (subscribe/acknowledge/unsubscribe) | | | | 0214,0215 | | IO device status request/reply | | | | 0216-0219 | | Relay function (subscribe/acknowledge/unsubscribe) | | | | 0220-0223 | | Digital input function (subscribe/acknowledge/unsubscribe) | | | | 0224 | | Set digital input function | | | | 0225 | | Reset digital input function | | | | 0240 | | User data download | | | | 0241-0244 | | User data (subscribe/acknowledge/unsubscribe) | | | | 0250-0253 | | Selector socket info (subscribe/acknowledge/unsubscribe) | | | | 0254 | | Selector control green lights | | | | 0255 | | Selector control red lights | | | | 0260 | | Tool tag ID request | | | | MID | Revisions | Command | |-----------|-----------|---| | 0300,0301 | | Histogram upload request/reply | | 0261-0264 | | Tool tag ID (subscribe/acknowledge/unsubscribe) | | 0400-0403 | | Automatic/Manual mode (subscribe/acknowledge/unsubscribe) | | 0410,0411 | | AutoDisable settings request/reply | # Chapter 7: EtherNet/IP™ This chapter describes the assembly object connection points and vendor-specific objects provided by the EYFR03. Implementation was done against EtherNet/IPTM specification edition 1.16 (April 2014) and the associated CIP specification edition 3.16 (April 2014) ## **Configuration Options** Figure 58: Main menu - Network Setup Figure 59: Network Setup Menu – EtherNet/IP Figure 60: EtherNet/IP Settings ### **Encap Timeout** Default: 120 seconds Range: 0 to 3600 seconds This setting controls the EtherNet/IP Encapsulation Inactivity Timeout in seconds used by the Controller. This should be left at the default value unless you are having problems staying connected to the Controller via EtherNet/IP. ## **Vendor-Specific Objects** The objects described in this section are vendor-specific objects created by C.E. Electronics (vendor ID: 1321) to manage the configuration of the EYFR03 that does not map to existing open objects. ### **Tool Object** #### Class Code: 64 Hex The Tool Object represents a tool learned into an EYFR03 device. A tool may be associated with one or more C.E. Parameter objects. #### Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|--------------|-----------|--------------------------|----------------------------| | 1 | Get | Revision | UINT | Revision of this object | 1 | | 2 | Get | Max Instance | UINT | Maximum instance number | The maximum number of | | | | | | of a tool object in the | tools as specified for the | | | | | | device. | product. | #### *Instance Attributes* | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|---|--------------|--|---| | 1 | Set | Name | SHORT_STRING | Name of the tool displayed on screen | Maximum length is 25 characters | | 2 | Get | Last Modified | DT | Last time the tool attributes were modified | | | 3 | Get | Туре | USINT | Type of tool | 0 = none
1-3 = reserved
4 = battery | | 4 | Set | Last Calibration
Date | DT | Date of last calibration reported by tool | | | 5 | Set | Next Calibration
Date | DT | Recommended date of next calibration | | | 7 | Set | Serial Number | SHORT_STRING | Serial number of the tool | Maximum length is 14 characters. | | 8 | Get | Cycle Count | UDINT | Total number of cycles performed by the tool. | | | 9 | Set | Cycles between Preventative Maintenance | UDINT | Number of cycles permitted between preventative maintenance. | | | 10 | Set | Last PM Cycle
Count | UDINT | Cycle count at time of last preventative maintenance | | | 11 | Get | Maintenance
Reject Options | ВУТЕ | Causes all results from a tool to be rejected when one or more of the specified maintenance operations are required. | Bit 0 – Calibration
Bit 1 – Cycles | | 12 | Get | Required
Maintenance | BYTE | Indicates what maintenance is currently required. | Bit 0 – Calibration
Bit 1 – Cycles | | Service | Available in | | Service Name | Description of Service | |---------|--------------|----------|--------------|------------------------| | Code | Class | Instance | | | | 0x05 | No | Yes | Reset | Resets the tool slot to factory defaults. (No actual action is taken with the tool. The tool is only forgotten by the Controller.) | |------|-----|-----|----------------------|--| | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute | | 0x10 | No | Yes | Set Attribute Single | Modifies a single attribute | ## C.E. Parameter Object #### Class Code: 65 Hex The C.E. Parameter Object refers to a parameter that describes the required operation for a batch of tightenings. This should not be confused with the Parameter Object (class code 10 hex) defined in the open portion of the Ethernet/IPTM protocol, which has a different use and is not implemented in this product line. #### Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|--------------|-----------|--|---| | 1 | Get | Revision | UINT | Revision of this object | 1 | | 2 | Get | Max Instance | UINT | Maximum instance number of a parameter set object in | The maximum number of parameters as specified | | | | | | the device. | for the product. | #### Instance Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|---------------|--------------|--------------------------|----------------------| | 1 | Set | Name | SHORT_STRING | Name of the parameter | Maximum length is 25 | | | | | | displayed on screen and | characters | | | | | | reported in results | | | 2 | Get | Last Modified | DT | Last time the parameter | | | | | | | attributes were modified | | | 3 | Set | Tools | UINT | Instance numbers of tool | | | | | | | used for this parameter | | | 5 | Set | Batch | USINT | Batch size | | | 6 | Get | Number of | UINT | Number of batches run in | This value resets on | | | | Batches | | this parameter | powerup. | | Service |
Available in | | Service Name | Description of Service | |---------|--------------|----------|----------------------|--| | Code | Class | Instance | | | | 0x05 | No | Yes | Reset | Resets the parameter to factory defaults. | | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute. | | 0x10 | No | Yes | Set_Attribute_Single | Modifies a single attribute. | ## C.E. Group Object #### Class Code: 66 Hex The C.E. Group Object refers to a group of parameters that may be run simultaneously, but must all run to complete an operation. This should not be confused with the Group Object (class code 12 hex) defined in the open portion of the EtherNet/IPTM protocol, which has a different use and is not implemented in this product line. #### Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|--------------|-----------|------------------------------|-------------------------| | 1 | Get | Revision | UINT | Revision of this object | 1 | | 2 | Get | Max Instance | UINT | Maximum instance number | The maximum number of | | | | | | of a parameter set object in | groups as specified for | | | | | | the device. | the product. | #### Instance Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|---------------|--------------|--------------------------|-------------------------| | 1 | Set | Name | SHORT_STRING | Name of the group. | Maximum length is 25 | | | | | | | characters | | 2 | Get | Last Modified | DT | Last time the group | | | | | | | attributes were modified | | | 3 | Get | Number of | USINT | Number of parameters in | Maximum 16 | | | | Parameters | | Parameters array | | | 4 | Set | Parameters | ARRAY of | Parameters in group. | | | | | | STRUCT of: | | | | | | | UINT | Instance number of the | | | | | | | parameter | | | | | | USINT | Batch size | Temporarily overrides, | | | | | | | but does not modify, | | | | | | | batch size in parameter | | Service | Available in | | Service Name | Description of Service | |---------|--------------|----------|----------------------|--| | Code | Class | Instance | | | | 0x05 | No | Yes | Reset | Resets the group to factory defaults. | | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute. | | 0x10 | No | Yes | Set_Attribute_Single | Modifies a single attribute. | ## Job Object ## Class Code: 67 Hex The Job Object represents a set of one or more parameter sets that must be performed as a group. Depending on the device configuration, the parameter sets may or may not be required to run in sequence. ## Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|--------------|-----------|--|--| | 1 | Get | Revision | UINT | Revision of this object | 1 | | 2 | Get | Max Instance | UINT | Maximum instance number of a job object in the device. | The maximum number of jobs as specified for the product. | ## Instance Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|-----------------|--------------|-------------------------------|--------------------------| | 1 | Set | Name | SHORT_STRING | Name of the tool displayed | Maximum length is 25 | | | | | | on screen | characters | | 2 | Get | Last Modified | DT | Last time the job attributes | | | | | | | were modified | | | 3 | Get | Number of Steps | USINT | Number of parameters in | | | | | | | Parameters array | | | 4 | Set | Steps | ARRAY of | Structure list containing the | Maximum length is 30. | | | | | STRUCT of: | parameters to run for the job | | | | | Item number | UINT | Instance number of the item | Parameter or group | | | | | | in the step | number. | | | | Item type | USINT | Item type | 0 – Parameter | | | | | | | 1 – Group | | | | Batch | USINT | Batch size | Temporarily overrides, | | | | | | | but does not modify, | | | | | | | batch size in parameter. | | | | | | | Ignored for Group steps. | | Service Availab | | able in | Service Name | Description of Service | |-----------------|-------|----------|----------------------|---| | Code | Class | Instance | | | | 0x05 | No | Yes | Reset | Resets the job to factory defaults. | | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute | | 0x10 | No | Yes | Set_Attribute_Single | Modifies a single attribute | # **Controller Settings Object** ## Class Code: 68 Hex The Controller Settings Object represents the Controller level settings for the EYFR03. #### Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|----------|-----------|--------------------------|--------------------| | 1 | Get | Revision | UINT | Revision of this object | 1 | #### Instance Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|----------------|--------------|---|---| | 1 | Get | Radio Address | UINT | The radio address of the device | | | 2 | Set | Radio Channel | USINT | The radio channel on which the device is operating. | Range: 1-12
Changing this value will
require all tools to be
reassociated. | | 3 | Set | Beeper Setting | ВҮТЕ | Controls when the unit will sound the beeper | Bit 0 – Beep on batch
Bit 1 – Beep on reject
Bit 2 – Beep on cycle | | 4 | Set | Beeper Volume | USINT | Volume level of the beeper | Range: 0-10
0 disables the beeper | | 5 | Set | Batch Timeout | ITIME | Duration to show the batch indicator on screen. | If 0, the indicator does not clear timeout. Cannot be negative | | 6 | Set | Cycle Timeout | ITIME | Duration to show the cycle indicator on screen. | If 0, the indicator does not clear timeout. Cannot be negative | | 7 | Set | Reject Timeout | ITIME | Duration to show the reject indicator on screen. | If 0, the indicator does not clear timeout. Cannot be negative | | 8 | Set | NOKs | USINT | How the system handles NOK results or rejects. | 0 – Ignore
1 – Display
2 – Report
3 – Count | | 9 | Set | Time | DT | The current system time of the device. | | | 10 | Set | Name | SHORT_STRING | The name of the device | Maximum length: 25 | | Service | Avail | able in | Service Name | Description of Service | |---------|-------|----------|----------------------|---| | Code | Class | Instance | | | | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute | | 0x10 | No | Yes | Set_Attribute_Single | Modifies a single attribute | # VIN Object ## Class Code: 69 Hex The VIN Object manages the current VIN and VIN-related settings. ## Class Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|----------|-----------|--------------------------|--------------------| | 1 | Get | Revision | UINT | Revision of this object | 1 | #### Instance Attributes | ID | Access | Name | Data Type | Description of Attribute | Semantics of Value | |----|--------|-------------------|--------------|--|--------------------| | 1 | Set | Require to start | BOOL | Indicates if a VIN is | | | | | | | required to run an operation. | | | 2 | Set | Clear on complete | BOOL | Indicates if the VIN is automatically cleared when an operation completes. | | | 3 | Set | VIN | SHORT_STRING | | Max Length: 100 | | Service | Avail | able in | Service Name | Description of Service | |---------|-------|----------|----------------------|---| | Code | Class | Instance | | | | 0x0E | Yes | Yes | Get_Attribute_Single | Returns the contents of the specified attribute | | 0x10 | No | Yes | Set_Attribute_Single | Modifies a single attribute | ## **Assembly Object Connection Points** This section defines the assembly object connection points provided by the EYFR03 product line. As per the EtherNet/IPTM specification for the Assembly Object, instance number and connection point are equivalent. This document will refer to them as connection point throughout. ## Output (O->T) Connection Points The following connection points are used by the EYFR03 to take input data from the network. These connection points allow you to control the running operation of the Controller. Other setting parameters may be configured through the vendor-specific objects. #### 160 | Name | Data Type | Description | |-------------|--------------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2-Job | | | | Ignored if Item Number is 0. | | Batch Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | VIN | SHORT_STRING | Max length 100 | Total size: 6-106 bytes #### 161 | Name | Data Type | Description | |-------------|-----------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2-Job | | | | Ignored if Item Number is 0. | | Batch
Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | Reserved | USINT | Padding byte for devices requiring even connection point sizes. | Total size: 5-6 bytes #### 162 | Name | Data Type | Description | |-------------|-----------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2 – Job | |-------------|--------------|--| | | | Ignored if Item Number is 0. | | Batch Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | Batch | USINT | Sets the batch size for the selected parameter. If Item Type is not 0 | | | | (Parameter), this value is ignored. If this value is 0, the parameter size | | | | stored in the EYFR03 will be used. | | VIN | SHORT_STRING | Max length 100 | Total size: 7-107 bytes ## 163 | Name | Data Type | Description | |-------------|-----------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2-Job | | | | Ignored if Item Number is 0. | | Batch Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | Batch | USINT | Sets the batch size for the selected parameter. If Item Type is not 0 | | | | (Parameter), this value is ignored. If this value is 0, the parameter size | | | | stored in the EYFR03 will be used. | Total size: 6 bytes ## 170 | Name | Data Type | Description | |-------------|------------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2-Job | | | | Ignored if Item Number is 0. | | Batch Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | VIN | USINT[100] | | | Reserved | USINT | Padding byte for devices requiring even connection point sizes. | Total size: 106 bytes #### 172 | Name | Data Type | Description | |-------------|------------|--| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2-Job | | | | Ignored if Item Number is 0. | | Batch Reset | USINT | When this value changes, the batch counts of the currently running | | | | parameter or group is reset. | | Suspend | BOOL | When set, suspends the unit without stopping a running parameter, | | | | group, or job. | | Batch | USINT | Sets the batch size for the selected parameter. If Item Type is not 0 | | | | (Parameter), this value is ignored. If this value is 0, the parameter size | | | | stored in the EYFR03 will be used. | | VIN | USINT[100] | | Total size: 106 bytes #### 181 | Name | Data Type | Description | |--------------|-----------|---| | Item Number | UINT | Instance number of items to run. Deactivate any running parameter, | | | | job, or group if 0. | | Item Type | USINT | Type of item to run: | | | | 0 - Parameter | | | | 1 – Group | | | | 2 – Job | | | | Ignored if Item Number is 0. | | Batch Sizes | USINT[16] | A temporary batch size to use for each tool or 0 to make no | | | | modification. | | Batch Reset | WORD | 16-bit word with each bit used to reset the batch of a tool when set (bit | | | | 0 resets tool 1, bit 1 resets tool 2, etc.) | | Tool Suspend | WORD | 16-bit word with each bit used to suspend a tool (bit 0 set suspends tool | | | | 1, bit 1 set suspends tool 2, etc.) | | Controller | BOOL | When set, suspends the unit without stopping a running parameter, | | Suspend | | group, or job. | Total size: 24 bytes Note that the values in this point refer to tools, but the EYFR03 runs parameters. This means that you must select a parameter, group, or job using the tools you want to control with this connection point. If a tool is not active in the selected parameter, group, or job, attempts to control them will be ignored. ## Input (T->O) Connection Points This section defines the connection points are used by EYFR03 to send output data to the network. The connection points are in the range 100-129 and are grouped by their content. - 10x: Connection points provided for backwards compatibility with the EYFR01. (Detailed in the *Input Connection Points for Backwards Compatibility* section later in this chapter) - 11x: Last tightening data - 12x: Current Controller status 22 March 2021 • 13x: Last tightening data with fixed length string fields ## Input Connection Points for Last Tightening Data The connection points in this group will contain data about the last tightening. As such, they are not updated after a parameter, group, or job selection until a tightening occurs. #### 110 | Name | Data Type | Description | |-------------------|--------------|--| | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Multi Sequence | UINT | Sequence number of the running multi-parameter operation. | | Number | | | | Multi Number | UINT | Instance number of multi-parameter operation (job or group) currently running. Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2 – Job | | | | Ignored if Multi-Number is 0. | | Parameter | UINT | Instance number of the parameter that produced the tightening | | Parameter Name | SHORT_STRING | Name of the parameter. Max length 25 | | Parameter | DT | Timestamp of the last change to the parameter | | Timestamp | | | | Tool Serial | SHORT_STRING | Serial number of the tool that produced the tightening. Max length 14 | | Number | | | | Tightening Status | BOOL | Indicates if the last tightening was accepted as valid. | | Count | USINT | Number of results performed in the current batch for the parameter. | | Batch | USINT | Number of results required for a batch in the parameter. | | Torque Unit | ENGUNIT | Unit used for torque fields | | Torque | REAL | Torque of the tightening just performed. | | Min Torque | REAL | Minimum torque required for a tightening in the parameter. | | Max Torque | REAL | Maximum torque required for a tightening in the parameter. | | Angle | UDINT | Angle of the tightening just performed. | | Min Angle | UDINT | Minimum angle required for a tightening in the parameter. | | Max Angle | UDINT | Maximum angle required for a tightening in the parameter. | | VIN | SHORT_STRING | Max length 100 | Total size: 55-194 bytes #### 111 | 111 | | | |--------------------------|-----------|---| | Name | Data Type | Description | | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Multi Sequence
Number | UINT | Sequence number of the running multi-parameter operation. | | Multi Number | UINT | Instance number of multi-parameter operation (job or group) currently running. Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: 1 – Group 2 – Job Ignored if Multi-Number is 0. | | Parameter | UINT | Number of the parameter that produced the tightening | | Tightening Status | BOOL | Indicates if the last tightening was accepted as valid. | | Count | USINT | Number of results performed in the current batch for the parameter. | | Batch | USINT | Number of results required for a batch in the parameter. | |-------------|--------------|--| | Torque Unit | ENGUNIT | Unit used for torque fields | | Torque | REAL | Torque of the tightening just performed. | | Angle | UDINT | Angle of the tightening just performed. | | VIN | SHORT_STRING | Max length 100 | | Reserved | USINT | Padding byte for devices requiring even connection point sizes and max | | | | VIN length. | Total size: 31-132 bytes #### 112 | Name | Data Type | Description | |-------------------|-----------|---| | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Multi Sequence | UINT | Sequence number of the running multi-parameter operation. | | Number | | | | Multi Number | UINT | Instance number of multi-parameter operation (job or group) currently | | | | running. Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2 – Job | | | | Ignored if Multi-Number is 0. | | Parameter | UINT | Number of the parameter that produced the tightening | | Tightening Status | BOOL | Indicates if the
last tightening was accepted as valid. | | Count | USINT | Number of results performed in the current batch for the parameter. | | Batch | USINT | Number of results required for a batch in the parameter. | Total size: 20 bytes #### 113 | • | | | |-------------------|-----------|---| | Name | Data Type | Description | | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Tightening Status | BOOL | Indicates if the last tightening was accepted as valid. | | Reserved | USINT | Padding byte for devices requiring even connection point sizes. | Total size: 11-12 bytes ## Input Connection Points for Current Controller Status The connection points in this group provide a view of the current Controller status and do not provide any information about tightenings. #### 120 | Name | Data Type | Description | |--------------|-----------|---| | Parameters | ARRAY of | Status of up to 16 parameters currently running. | | | STRUCT | | | | of: | | | | UINT | Parameter number (0 means parameter not running.) | | | USINT | Number of results performed in the current batch for the parameter. | | | USINT | Number of results required for a batch in the parameter. | | Multi Number | UINT | Number of multi-parameter operation (job or group) currently running. | | | | Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2 – Job
Ignored if Multi-Number is 0. | |---------|------|--| | Suspend | BOOL | | Total size: 68 bytes #### 121 | Name | Data Type | Description | |------------------|-----------|--| | Tool Parameters | ARRAY of | Status of up to 16 parameters currently running. | | | STRUCT | | | | of: | | | - Parameter | UINT | Parameter number currently using the tool. (0 means no parameter using the | | Number | | tool is running.) | | - Count | USINT | Number of results performed in the current batch for the tool. | | - Batch | USINT | Number of results required for a batch in the tool. | | - Status | USINT | Status of tool | | | | 0 – None | | | | 1 – Cycle | | | | 2 – Batch | | | | 3 – Reject | | | | 4 – Batch NOK (batch complete with a counted reject) | | Multi Number | UINT | Number of multi-parameter operation (job or group) currently running. | | | | Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2 – Job | | | | Ignored if Multi-Number is 0. | | Suspend | BOOL | Indicates if the Controller is suspended. | | Operation Status | USINT | 0 – None/In Progress | | | | 1 – Complete | | | | When running an individual Parameter (Multi Number = 0), Complete will | | | | correspond to a batch completion. | | | | When running a Group (Multi Number non-zero, Multi Type = 1), | | | | Complete will happen when the last parameter in the group to completes its | | | | batch. | | | | When running a Job (Multi Number non-zero, Multi Type = 2), Complete | | | | will happen when the last step (parameter or group) in the job is completed. | | Reserved | | Padding byte for devices requiring even connection point sizes. | Total size: 85-86 bytes ## Input Connection Points for Last Tightening Data (fixed length) The connection points in this group will contain data about the last tightening. As such, they are not updated after a parameter, group, or job selection until a tightening occurs. These points are similar to the points in the 11x range, except that the SHORT_STRING fields are now fixed-length character arrays. Strings shorter than the field length are left-aligned in the field and null-padded. #### 130 | Name | Data Type | Description | |----------------|-----------|---| | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Multi Sequence | UINT | Sequence number of the running multi-parameter operation. | | Number | | | 22 March 2021 | Multi Number | UINT | Instance number of multi-parameter operation (job or group) currently | |-------------------|------------|---| | | | running. Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2-Job | | | | Ignored if Multi-Number is 0. | | Parameter | UINT | Instance number of the parameter that produced the tightening | | Parameter Name | USINT[25] | Name of the parameter | | Parameter | DT | Timestamp of the last change to the parameter | | Timestamp | | | | Tool Serial | USINT[14] | Serial number of the tool that produced the tightening. | | Number | | | | Tightening Status | BOOL | Indicates if the last tightening was accepted as valid. | | Count | USINT | Number of results performed in the current batch for the parameter. | | Batch | USINT | Number of results required for a batch in the parameter. | | Torque Unit | ENGUNIT | Unit used for torque fields | | Torque | REAL | Torque of the tightening just performed. | | Min Torque | REAL | Minimum torque required for a tightening in the parameter. | | Max Torque | REAL | Maximum torque required for a tightening in the parameter. | | Angle | UDINT | Angle of the tightening just performed. | | Min Angle | UDINT | Minimum angle required for a tightening in the parameter. | | Max Angle | UDINT | Maximum angle required for a tightening in the parameter. | | VIN | USINT[100] | | | Reserved | USINT | Padding byte for devices requiring even connection point sizes. | Total size: 192 bytes ## 131 | Name | Data Type | Description | |-------------------|------------|---| | Tightening ID | UDINT | ID number of the last tightening | | Time | DT | Timestamp of the last tightening | | Multi Sequence | UINT | Sequence number of the running multi-parameter operation. | | Number | | | | Multi Number | UINT | Instance number of multi-parameter operation (job or group) currently | | | | running. Ignored if 0. | | Multi Type | USINT | Type of multi-parameter operation currently running: | | | | 1 – Group | | | | 2 – Job | | | | Ignored if Multi-Number is 0. | | Parameter | UINT | Number of the parameter that produced the tightening | | Tightening Status | BOOL | Indicates if the last tightening was accepted as valid. | | Count | USINT | Number of results performed in the current batch for the parameter. | | Batch | USINT | Number of results required for a batch in the parameter. | | Torque Unit | ENGUNIT | Unit used for torque fields | | Torque | REAL | Torque of the tightening just performed. | | Angle | UDINT | Angle of the tightening just performed. | | VIN | USINT[100] | | Total size: 130 bytes ## **Backwards Compatibility Assembly Object Connection Points** The EYFR03 provides some connection points designed to match the connection points of the EYFR01. These points are not recommended for new installations. In the EYFR01, the parameters were represented primarily as 'A' – 'H', but allowed 0 – 7 and '0' – '7'. Since the EYFR03 starts at parameter 1 and does not have a parameter 0, an offset will be applied to the parameter value in the compatibility points. A value of 'A', '0', or 0 in these connections will select parameter 1, a value of 'B', '1', or 1 will select parameter 2; and so on in the EYFR03. For T->O compatibility connection points, 'A' will be output if parameter 1 is running, 'B' if parameter 2 is running and so on. ### Data Types Most data types used correspond to the data types in the EtherNet/IPTM specification and IEC 1131-3. One additional data type is defined for backwards compatibility points: | Name | Size (bytes) | Description | |------|--------------|--| | CHAR | 1 | Character in the ASCII range. Used to indicate fields that should be | | | | interpreted as characters rather than numeric values, where USINT | | | | would be used instead. When used in an array, indicates a fixed- | | | | length string instead of the length prefixed strings defined by the | | | | specification. | Fixed-length arrays are represented as TYPE[n] where TYPE is the element type and n is the number of elements. ### Output (O->T) Connection Points Connection points in the 15x range correspond to the masks used with the EYFR01, which used only 150 as the output connection point. These connection points are provided for backwards compatibility and are not recommended for new installations. New data configurations start at connection point 160. #### 150 This connection point corresponds to the default mask of the EIP network card for the EYFR01. | Name | Data Type | Description | |-------------|-----------|--| | Parameter | USINT | Selects a parameter for the EYFR03 to run. May be any value in the ranges | | | | 0-7, '0'-'7', 'A'-'H' (see above for details). Values outside these ranges | | | | will cause the current parameter to be stopped and leave no parameter | | | | running. | | Batch Reset | USINT | When this value changes, the batch will be reset. | | Suspend | BOOL | When true, suspends the EYFR03. | | Batch | USINT | The number of tightenings to run per batch for the selected parameter. | | | | Ignored if 0. | | Time | CHAR[6] | ASCII digits of Controller time in HHMMSS format. Ignored if Date field | | | | does not represent a valid date. | | Date | CHAR[6] | ASCII digits of Controller date in MMDDYY format. Ignored if Time | | | | field does not represent a valid time. | | Min Torque | CHAR[6] | ASCII digits and decimal point ('.') representing the value. Not used by the | |
| | EYFR03. | | Max Torque | CHAR[6] | ASCII digits and decimal point ('.') representing the value. Not used by the | | | | EYFR03. | | Min Angle | CHAR[5] | ASCII digits representing the value. Not used by the EYFR03. | | Max Angle | CHAR[5] | ASCII digits representing the value. Not used by the EYFR03. | |-----------|---------|---| | Units | CHAR | Character representing the units of the torque. Not used by the EYFR03. | | Reserved | USINT | | Total size: 40 bytes #### 151 This connection point corresponds to the mask 1 of the EIP network card for the EYFR01. | Name | Data Type | Description | |-------------|-----------|---| | Parameter | USINT | Selects a parameter for the EYFR03 to run. May be any value in the ranges 0-7, '0'-'7', 'A'-'H' (see above for details). Values outside these ranges will cause the current parameter to be stopped and leave no parameter running. | | Batch Reset | USINT | When this value changes, the batch will be reset. | | Suspend | BOOL | When true, suspends the EYFR03. | | Batch | USINT | The number of tightenings to run per batch for the selected parameter. Ignored if 0. | Total size: 4 bytes ## Input Connection Points for Backwards Compatibility The connection points in this group correspond to the default masks provided in the $EtherNet/IP^{TM}$ network card for the EYFR01 and are provided to make the EYFR03 easier to drop into existing installations. These connection points are not recommended for new installations. #### 100 This connection point corresponds to the default mask of the EIP network card for the EYFR01. | Name | Data Type | Description | |-------------------|-----------|--| | Parameter | CHAR | 'A'-'H' | | Tool Type | CHAR[3] | Type of the tool for the current parameter. One of: | | | | "AIR" – Pneumatic air tools | | | | "BAT" – Battery operated tool | | | | "CLK" – Click wrench | | | | "DIG" – Digital torque wrench | | | | " " – No parameter running | | Parameter Name | CHAR[8] | Name of the parameter | | Tightening Status | CHAR | Status of the last tightening. One of: | | | | 'O' – Good tightening | | | | 'N' – Bad tightening or no tightening performed since the last parameter | | | | change | | Tightening Type | CHAR | Type of the last tightening. One of: | | | | 'B' – Good tightening that finished a batch | | | | 'C' – Good tightening that did not finish a batch | | | | 'R' – Bad tightening | | | | 'N' – No tightening performed since the last parameter change | | Count | USINT | The count of the last tightening. | | Batch | USINT | The batch size of the last tightening | | Rolling Count | UINT | Number of tightenings that have occurred. | | Total | UINT | Number of batches completed in the parameter. | | Time | CHAR[6] | ASCII digits of time of last tightening in HHMMSS format. | | Date | CHAR[6] | ASCII digits of date of last tightening in MMDDYY format. | | EE Time | CHAR[6] | ASCII digits of time of last EEPROM write in HHMMSS format. | |-------------|---------|--| | EE Date | CHAR[6] | ASCII digits of date of last EEPROM write in MMDDYY format. | | Torque | CHAR[6] | ASCII digits and decimal point ('.') representing the value. Not used by | | | | the EYFR03. | | Min Torque | CHAR[6] | ASCII digits and decimal point ('.') representing the value. Not used by | | | | the EYFR03. | | Max Torque | CHAR[6] | ASCII digits and decimal point ('.') representing the value. Not used by | | | | the EYFR03. | | Units | USINT | Character representing the units of the torque. Not used by the EYFR03. | | Angle | CHAR[5] | ASCII digits representing the value. Not used by the EYFR03. | | Min Angle | CHAR[5] | ASCII digits representing the value. Not used by the EYFR03. | | Max Angle | CHAR[5] | ASCII digits representing the value. Not used by the EYFR03. | | Tool Type 1 | CHAR[3] | Type of tool in parameter 1. See Tool Type for values. | | Tool Type 2 | CHAR[3] | Type of tool in parameter 2. See Tool Type for values. | | Tool Type 3 | CHAR[3] | Type of tool in parameter 3. See Tool Type for values. | | Tool Type 4 | CHAR[3] | Type of tool in parameter 4. See Tool Type for values. | | Tool Type 5 | CHAR[3] | Type of tool in parameter 5. See Tool Type for values. | | Tool Type 6 | CHAR[3] | Type of tool in parameter 6. See Tool Type for values. | | Tool Type 7 | CHAR[3] | Type of tool in parameter 7. See Tool Type for values. | | Tool Type 8 | CHAR[3] | Type of tool in parameter 8. See Tool Type for values. | Total size: 102 bytes ## 101 This connection point corresponds to the mask 1 of the EIP network card for the EYFR01. | Name | Data Type | Description | |-------------------|-----------|--| | Parameter | CHAR | 'A'-'H' | | Tightening Status | CHAR | Status of the last tightening. One of: | | | | 'O' – Good tightening | | | | 'N' – Bad tightening or no tightening performed since the last parameter | | | | change. | | Tightening Type | CHAR | Type of the last tightening. One of: | | | | 'B' – Good tightening that finished a batch | | | | 'C' – Good tightening that did not finish a batch | | | | 'R' – Bad tightening | | | | 'N' – No tightening performed since the last parameter change | | Count | USINT | The count of the last tightening. | | Batch | USINT | The batch size of the last tightening | | Rolling Count | UINT | Number of tightenings that have occurred. | | Total | UINT | Number of batches completed in the parameter. | | Reserved | USINT | | Total size: 10 bytes ## 102 This connection point corresponds to the mask 2 of the EIP network card for the EYFR01. | Name | Data Type | Description | |-------------------|-----------|--| | Tightening status | CHAR | Status of the last tightening. One of: | | | | 'O' – Good tightening | | | | 'N' – Bad tightening or no tightening performed since the last parameter | | | | change. | | Rolling Count | UINT | Number of tightenings that have occurred. | | Reserved | USINT | | Total size: 4 bytes # Chapter 8: ToolsNet #### Introduction This chapter describes the support for the ToolsNet Open Protocol in the EYFR03. Implementation of the protocol is according to ToolsNet Open Protocol version 3.2. The EYFR03 reports System Type as 3 and System Name as "EYFR03". ## **Configuration Options** Figure 62: Network Settings Menu – ToolsNet Figure 63: ToolsNet Settings #### Enable ToolsNet? Default: No This setting determines if the Controller will attempt to establish a ToolsNet connection. Unlike the other network protocols supported by the Controller, ToolsNet requires the controller to establish connections. Since the Controller will repeatedly make network requests to attempt to establish a network connection to the ToolsNet server, you should only enable ToolsNet if you have a server set up in the network. #### PIM server address Default: 192.168.1.66 This setting controls the IP address the Controller will use to establish a ToolsNet connection. #### PIM server port Default: 6575 Range: 0 to 65535 This setting controls the port the Controller will use to establish a ToolsNet connection at the PIM server address. ### PIM retry interval Default: 60 seconds Range: 0 to 3600 seconds This setting controls how long the Controller will wait after a failed attempt to establish a ToolsNet connection before it tries again. #### Result timeout Default: 5 seconds Range: 0 to 60 seconds This setting controls how long the Controller will wait for a response from the ToolsNet server when sending a tightening or keep alive packet. If no response is received within the specified result timeout, the Controller will try again, up to the specified number of retries. If no response is received after all retries, the ToolsNet connection is considered broken and will have to be reestablished. #### Result retries Default: 2 Range: 0 to 10 This setting controls how many times the Controller will resend a tightening or keep alive packet to the ToolsNet server before considering the connection broken. If no response is received within the specified result timeout, the Controller will try again, up to the specified number of retries. If no response is received after all retries, the ToolsNet connection is considered broken and will have to be re-established. #### Keep alive Default: 30 seconds Range: 0 to 3600 seconds This setting controls how often the Controller will send a keep alive packet to the ToolsNet server if no other packets are being sent. When set to 0, the Controller does not send keep alive packets. This value is recommended to be less than half the inactivity timeout of the server to ensure the connection is not closed due to a single missed keep alive packet. For example, if the server is configured to timeout after 30 seconds of inactivity, the keep alive setting on the unit should be less than 15 seconds. ### System number Default: 1 Range: 0 to 9999 This setting controls the system number the Controller reports to the ToolsNet server in identification and tightening packets. #### Station number Default: 1 Range: 0 to 9999 This setting controls the station number the Controller reports to the ToolsNet server in identification and tightening packets. # Chapter 9: PFCS Network Protocol ## **Configuration Options** The PFCS network has several options that need to be configured to set up the device for use in the plant. Besides the PFCS specific options listed below, be sure to set the general network options such as device IP address under the General settings. The main
User Manual describes the process to set these options. Figure 64: Main menu - Network Setup Figure 66: PFCS Settings Figure 65: Network Setup Menu - PFCS | | | PF | CS Pa | amet | er Ma | chine | e Name | s | | |----|-------------|----|-------|------|-------|-------|--------|----|------| | 1 | EY01 | 11 | EY11 | 21 | EY21 | 31 | EY31 | 41 | EY41 | | 2 | EY02 | 12 | EY12 | 22 | EY22 | 32 | EY32 | 42 | EY42 | | 3 | EYØ3 | 13 | EY13 | 23 | EY23 | 33 | EY33 | 43 | EY43 | | 4 | EY04 | 14 | EY14 | 24 | EY24 | 34 | EY34 | 44 | EY44 | | 5 | EYØ5 | 15 | EY15 | 25 | EY25 | 35 | EY35 | 45 | EY45 | | 6 | EY06 | 16 | EY16 | 26 | EY26 | 36 | EY36 | 46 | EY46 | | 7 | EY07 | 17 | EY17 | 27 | EY27 | 37 | EY37 | 47 | EY47 | | 8 | EY08 | 18 | EY18 | 28 | EY28 | 38 | EY38 | 48 | EY48 | | 9 | EY09 | 19 | EY19 | 29 | EY29 | 39 | EY39 | 49 | EY49 | | 10 | EY10 | 20 | EY20 | 30 | EY30 | 40 | EY40 | 50 | EY50 | 1-50 51-100 | | | | | Е | xit | | | Figure 67: PFCS Machine Names ## **Protocol Settings** #### Enable Solicited? Default: no This setting determines if the Controller will attempt to establish a solicited PFCS connection. This setting is disabled by default because the Controller will repeatedly make network requests to attempt to establish a network connection to the PFCS server when enabled. #### Enable Unsolicited? Default: no This setting determines if the Controller will attempt to establish an unsolicited PFCS connection. This setting is disabled by default because the Controller will repeatedly make network requests to attempt to establish a network connection to the PFCS server when enabled. #### Single Solicited Name? Default: yes EYFR03 User Manual Chapter 9: PFCS Network Protocol This setting determines if the Controller will use a single machine id on the solicited connection or if it will use a separate machine id per parameter. When this setting is set to No, the machine ids for each parameter can be set from the IDs page. #### Solicited Name Auto? Default: yes This setting determines if the Controller will use an automatically assigned machine id on the solicited connection. If this setting is set to no, you must enter the desired machine id in the Solicited Name setting. #### Solicited Name Default: ---- This setting determines the name the Controller will use for solicited connections when not using an automatically assigned machine id on the solicited connection. This setting is ignored if Solicited Name Auto is set to yes. #### **Unsolicited Name Auto?** Default: yes This setting determines if the Controller will use an automatically assigned machine id on the unsolicited connection. If this setting is set to no, you must enter the desired machine id in the Unsolicited Name setting. #### Unsolicited Name Default: ---- This setting determines the name the Controller will use for unsolicited connections when not using an automatically assigned machine id on the unsolicited connection. This setting is ignored if Unsolicited Name Auto is set to yes. #### Server Address Default: 192.168.1.69 This setting controls the IP address the Controller will use to establish PFCS connections. #### Solicited Port Default: 16101 Range: 0 to 65535 This setting controls the port the Controller will use to establish a PFCS solicited connection. #### **Unsolicited Port** Default: 16102 Range: 0 to 65535 This setting controls the port the Controller will use to establish a PFCS unsolicited connection. EYFR03 User Manual 100 of 113 v1.6.1 #### **ACK Timeout** **Default**: 5 seconds Range: 0 to 60 seconds This setting controls how long the Controller will wait for an ACK to its messages. #### Retries Default: 3 Range: 0 to 10 This setting controls how many times the Controller will retry a message. #### Keep Alive Default: 120 seconds Range: 0 to 3600 This setting controls how often the Controller will send a keep alive packet to the PFCS server if no other packets are being sent. #### Parameter specific Machine IDs When the Single Solicited Name setting is set to No, the machine IDs for each parameter can be set from the IDs page. ## **Unsolicited Messages** The EYFR03 allows the PFCS network to select parameters, groups, or jobs to be selected via the unsolicited messages. The device-specific data consists of a letter followed by a number of 1-3 digits. The letter may be one of P, G, J, or N. When the letter is 'N', the Controller will stop the currently running operation and the number will be ignored. Otherwise, the letter indicates which type of operation to start: - P Parameter - G Group - J Job The number may be 1 to 100 and indicates which parameter, group, or job to select. #### Examples: - P01 selects parameter 1 - G30 selects group 30 - J074 selects job 74 - N1 stops the running operation # Chapter 10: PROFINET This chapter describes the PROFINET implementation provided by the EYFR03. # **Configuration Options** Figure 68: Main menu - Network Setup Figure 69: Network Setup Menu – PROFINET **Figure 70: PROFINET Settings** #### Enable PROFINET? Default: no This setting determines if PROFINET is enabled in the EYFR03. Please be aware that when enabling PROFINET, the IP address in the EYFR03 will be erased and will either need to be reentered through the menu or set by a PROFINET configuration tool. ## **Data Format** The below tables show the data available for the input and output slots. The offsets are relative to the start address for each slot's address space. **Tool IO Module Input** | 10011 | | | | | | |--------|------|-----------------------|----------|--|--| | Offset | Size | Name | Type | Description | | | 0 | 1 | Job Number | USINT | Job number. (0 means job not running) | | | 1 | 1 | Parameter USINT Param | | Parameter number. (0 means parameter not running.) | | | | | Number | | | | | 2 | 1 | Tool Number | USINT | Active tool number. (0 means no tool active) | | | 3 | 1 | Status | USINT | Status of parameter | | | | | | | 0 – None | | | | | | | 1 – Cycle | | | | | | | 2 – Batch | | | | | | | 3 – Reject | | | | | | | 4 – Batch NOK (batch complete with a counted reject) | | | 4 | 1 | Count | USINT | Number of tightenings performed in the current batch for the | | | | | | | parameter. | | | 5 | 1 | Batch | USINT | Number of tightenings required for a batch in the parameter. | | | 6 | 2 | Timestamp Date | DATE | Date portion of timestamp of the last tightening | | | 8 | 4 | Timestamp Time | TOD | Time portion of timestamp of the last tightening | | | 12 | 2 | Last Parameter | DATE | Date portion of the last time the parameter of the last | | | | | Write Date | | tightening was written | | | 14 | 4 | Last Parameter | TOD | Time portion of the last time the parameter of the last | | | | | Write Time | | tightening was written | | | 18 | 4 | Tightening ID | UDINT | ID number of the last tightening | | | 22 | 1 | Result Status | USINT | 0 – OK; 1 – NOK | | | 23 | 14 | Tool Serial | CHAR[14] | Serial number of the tool that performed the last tightening | | | | | Number | | | | | 37 | 25 | VIN | CHAR[25] | VIN of the last tightening. | | **Tool IO Module Output** | Offset | Size | Name | Type | Description | |--------|------|-----------------|-------|---| | 0 | 1 | Job Number | USINT | Job number to run. | | 1 | 1 | Parameter | USINT | Parameter number to run. Ignored if Job Number is not 0. | | | | Number | | 255 means temporary parameter with information below. | | 2 | 1 | Batch | USINT | Sets the batch size for the selected parameter. Ignored if Job | | | | | | Number is not 0. If this value is 0, the parameter size stored | | | | | | in the EYFR03 will be used. | | 3.0 | bit | Suspend | BOOL | When set, suspends on the interface without stopping a | | | | | | running parameter or job. | | 3.1 | bit | Batch Reset | BOOL | When this value changes from false to true, the batch count of | | | | | | the currently running parameter on the interface is reset. | | 3.2 | bit | Job Step | BOOL | When this value changes from false to true, the EYFR03 will | | | | Increment | | move to the next step in the active job. | | | | | | Ignored if Job Number is 0. | | 3.3 | bit | Job Step | BOOL | When this value changes from false to true, the EYFR03 will | | | | Decrement | | move to the previous step in the active job. | | | | | | Ignored if Job Number is 0 or if already on the first step in the | | | | | | job. | | 3.4 | bit | Batch Increment | BOOL | When this value changes from false to true, the EYFR03 will | | | | | | increment the count as if a valid tightening was performed. | | | | I = = | I = 0.07 | | |-----|-----|-------------------|-------------|--| | 3.5 | bit | Batch Decrement | BOOL | When this value changes from false to true, the EYFR03 will | | | | | | decrement the batch count. | | | | | | Ignored if the count is 0. | | 4 | 25 | VIN | CHAR[25] | Sets the VIN to be used by the controller. | | 29 | 1 | Reserved | USINT | Padding byte to align structure. This field does not need to be | | | | | | listed in the PLC data type. | | | | | | Temporary Parameter Settings | | 30 | 1 | Temp Tool | USINT | Tool number used for temporary parameter | | | | Number | | | | 31 | 1 | Temp Socket | USINT | | | 32 | 1 | Temp Batch | USINT | | | 33 | 1 | Temp Lock on | BOOL | | | | 1 | Batch | BOOL | | | | | Butch | | AccuPulse Tool Settings | | 34 | 1 | Temp Cross | USINT | Controls if the tool uses its cross-thread reduction behavior | | 34 | 1 | Thread Reduction | OSINI | 0 – Off | | | | Tillead Reduction | | 1 – >360° Reverse | | 35 | 1 | Tomp Dugger | USINT | Controls when the buzzer in the tool sounds | | 33 | 1 | Temp Buzzer | USINI | | | | | Setting | | 0 – Off
1 – OK | | | | | | | | 2.6 | | | I I G D I T | 2 – NOK | | 36 | 1 | Temp | USINT | If the clutch is activated
before the minimum runtime set by | | | | Crossthread/Rehit | | this setting, the tool alerts the operator to a NOK fastening. | | | | Detection | | Specified in tenths of a second (range 0-3.0s) | | 37 | 1 | Temp Variable | USINT | Controls if the tool run speed can be controlled by use of the | | | | Speed Control | | trigger | | | | | | 0 – Variable | | | | | | 1 – Fixed | | 38 | 1 | Temp Flush | USINT | Set to 1 for applications with light load before snug point. Set | | | | Detection Mode | | to 7 for applications with heavy loads or varying joint rate | | | | | | before snug point. (range 1-7) | | 39 | 1 | Temp Torque | USINT | Controls the torque setting of the tool. (range 0-40) | | | | Setting | | | | 40 | 1 | Temp LED Light | USINT | Controls how the LED on the tool is activated | | | | | | 1 – Remote | | | | | | 2 – Trigger | | 41 | 1 | Temp Flush | USINT | Delays Flush Torque Detection mode and ignores loads for the | | | | Detection Delay | | specified time. | | | | | | Specified in seconds (range 0-30s) | | 42 | 1 | Temp | USINT | Controls the amount of time the tool is prevented from | | | _ | Retightening | | operating after shut-off. | | | | Prevention | | Specified in tenths of a second (range 0-3.0s) | | 43 | 1 | Temp Socket | USINT | Specifies the socket extension in use. | | '3 | 1 | Extension Mode | | 0 – None | | | | ZACIISIOII WIOGC | | 1 – 150mm | | | | | | 2 – 250mm | | | | | | OK/NOK Tool Settings | | 44 | 2 | Temp Time | UINT | Amount of time after an accepted tightening before another | | 44 | | | UINI | | | | | Between Cycles | | tightening should be accepted. | | 1.0 | _ | T T' | LIINT | Specified in seconds (range 0-9999s) | | 46 | 2 | Temp Time | UINT | Amount of time after a batch completion before another | | | | Between Batches | | tightening should be accepted. | | | | | | Specified in seconds (range 0-9999s) | # Chapter 11: Data Management The EYFR03 can download configuration data, results and event logs to and upload configuration data and firmware from a USB drive. When a USB drive is plugged into the unit, it will switch from whatever screen it is on to the USB Menu. #### Download data to USB Figure 71: USB Menu - Download Figure 72: USB Download screen #### Soft keys - 1. Download All Downloads all files to the USB drive. - 2. No function - 3. Download Downloads the selected files to the USB drive. - 4. Cancel [ESC] Returns to the USB Menu screen. #### **Available Files** #### Results The results file will be saved to the USB drive as "####res.csv" where the #### is the last four digits of the unit serial number. This file contains all tightening results saved in the unit's memory in a CSV format. ## Configuration The configuration file will be saved to the USB drive as "###conf.eqc" where the #### is the last four digits of the unit serial number. This file contains all the configuration settings for the unit, including tools, parameters, groups, jobs, Controller and network settings, and I/O settings. This file can be loaded into the PC application for viewing or editing. ## Event Log The event log file will be saved to the USB drive as "####evt.csv" where the #### is the last four digits of the unit serial number. This file contains all non-tightening events saved in the unit's memory in a CSV format. ## Network Log The network log file will be saved to the USB drive as "####net.g4n" where the #### is the last four digits of the unit serial number. This file contains the network log data in a binary format. This log does not persist across power cycles. EYFR03 User Manual Chapter 11: Data Management ## Upload USB file to device Figure 74: USB Upload screen When entering the USB Upload screen, the unit will look in the root folder to find any available files to upload. Make sure you have no more than one file of a given type on the USB drive, as the unit does not provide a way to select between multiple files of a given type. #### Soft keys - 1. Upload All Uploads all files from the USB drive. - 2. No function - 3. Upload Uploads the selected files from the USB drive. - 4. Cancel [ESC] Returns to the USB Menu screen. ### **Available Files** #### **Firmware** Firmware files have the extension ".bec". If a file is found, the unit will validate the file before uploading it. If a firmware file is uploaded, the unit will reprogram itself with the new firmware and reboot. ## Configuration Configuration files have the extension ".eqc". If a file is found, the unit must validate the file before uploading it. These files can be created by downloading from a Controller or by saving a configuration file from the PC application. This file contains all the configuration settings for the unit, including tools, parameters, groups, jobs, Controller and network settings, and I/O settings. When uploading the configuration, all existing settings will be overwritten with the new values. New tools referenced in the configuration file will need to be associated with the Controller, as if learning them to the unit. EYFR03 User Manual Chapter 11: Data Management 108 of 113 # Chapter 12: Firmware Updates - 1. If the firmware update file was emailed to you, put it on a USB drive, in the root folder of the drive. If you received the firmware update already on a USB drive, proceed to step 2. - 2. Turn on power to the unit and let it go through the startup process. - 3. Insert the USB drive into the connector on the unit. - 4. Wait for the unit to detect the USB drive. (This may take several seconds.) When the drive is detected, you should see the USB menu. If the unit does not detect the drive, contact support. If the update was emailed to you, you may also try another USB drive. 5. To upload the firmware into the unit, press the down arrow to highlight "Upload USB file to device" then press ENT. This will take you to the USB Upload screen. - 6. When the unit changes to the upload screen, it will search the root folder of the drive for the firmware update. If no valid update file is found, the screen will show an error. Otherwise, press the right arrow to select "Yes" for the firmware and then press the **Upload** soft key to start the upload. - 7. When the upload is complete, the unit will restart. At this point, you may remove the USB drive. # Chapter 13: Product Specifications #### **Controller Placement** - Mount the Controller within 33ft of the tool during assembly. - Keep tool line of sight in view to the Controller. Metal, stone, glass, plaster and other material will obstruct the wireless signal - Avoid channels used by other 2.4Ghz tools. Channel 1 is default in the Controller - Do a channel scan to choose the channel with the least interference. See the XBEE Channel screen on page 36 for more details - Channels 1, 6 and 11 are the most commonly used on 2.4Ghz hardware. - Avoid mounting the Controller on vibrating surfaces - Do not mount other equipment within 24-36" of the Controller - Be aware of interference from other devices such as microwaves, wireless barcode readers, fluorescent lighting, power cables, garage door openers, walkie talkies, cordless phones, wireless security hardware and Bluetooth devices that can interrupt the wireless signal ## **Dimensions** | | English | | Metric | | | |-------------------|---------|------|--------|------|--| | | Value | Unit | Value | Unit | | | Height | 10 5/8 | in | 26.9 | cm | | | Width | 10 5/16 | in | 26.1 | cm | | | Depth | 4 1/2 | in | 11.0 | cm | | | Weight | 8.2 | lb | 3.72 | kg | | | Power consumption | | | 11 | W | | ## **Radio Information** | Item | Value | |-----------------------------|----------------------------| | Indoor/Urban range | 300 ft. / 100 m | | Outdoor line-of-sight range | 1 mile / 1500 m | | Transmit power | 60 mW (18 dBm) conducted | | | 100 mW (20 dBm) EIRP | | Receiver sensitivity | -100 dBm (1% packet error) | | FCC Part 15.247 | OUR-XBEEPRO | | Industry Canada | 4214A XBEEPRO | | Europe (CE) | ETSI | ## **FCC Statement** #### Contains FCC ID: OUR-XBEE/OUR-XBEEPRO The enclosed device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (i.) this device may not cause harmful interference and (ii.) this device must accept any interference received, including interference that may cause undesired operation. ## **Channel Frequencies** | Channel | Frequency (GHz) | |---------|-----------------| | 1 | 2.410 | | 2 | 2.415 | | 3 | 2.420 | | 4 | 2.425 | | 5 | 2.430 | | 6 | 2.435 | | 7 | 2.440 | | 8 | 2.445 | | 9 | 2.450 | | 10 | 2.455 | | 11 | 2.460 | | 12 | 2.465 |